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What are the transition dynamics associated with shocks in a city?
Quantitative urban models increasingly used to analyze shocks in cities

Ahlfeldt et al. (2015), Tsivanidis (2023), Dingel & Tintelnot (2024)

These are long-run models. Transition may be slow due to sluggish housing adjustment.

We develop a quantitative, dynamic, spatial model of housing development
- Housing is durable: easier to ‘build up’ than ‘build down’

Glaeser & Gyourko (2005)

- Frictions like zoning restrictions impede development
Saiz (2010), Baum Snow & Han (2024)

Application: the dynamics of housing development in San Francisco.
- Methodology to uncover latent zoning restrictions from observed allocations

- Study transition dynamics associated with demand shocks and ‘upzoning.’
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Model Outline: Households consume and reside, devs build housing

Time t ∈ [0,∞) and space x ∈ [0,1] are continuous.

At each t , mass of households decide where to live x , work at final goods firm, earn w .
- Choose floorspace and goods demands h, c, face relative floorspace price p(x , t)

- Freely mobile =⇒ spatial eq’m holds at each instant

Developers make dynamic decisions
- Developers take housing prices as given

- Construct and operate floorspace H subject to operating and adjustment costs

Landlords rent land to developers, consume final good.

Zoning regulations limit the amount of floorspace per unit land.
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Households consume goods and housing, and prefer amenities
Mass N households.

At each t , households at x maximize,

u(x , t) ≡ max
c,h

A(x , t)
(

c
1 − β

)1−β (h
β

)β

s.t. c + p(x , t)h ≤ w(x , t)

Households are freely mobile, and choose x to maximize u(x , t).

A spatial equilibrium holds at all t ,

u(t) ≡ u(x , t) = u(x ′, t) ∀x , x ′

Allows for,
- Congestion externalities and spatial spillovers in A(x , t).

- Commuting and labor market effects on w(x , t). (Will do in quant. section)
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‘Housing’ technology: costly to build or demolish fast
At each x , there is a developer that chooses how to develop floorspace. Developers
compete for the right to operate on land, so land rents r(x , t) exhaust all profit.

For a developer at x , the recursive form of their problem is given by the
Hamilton-Jacobi-Bellman equation,

ρV(H, t)− Vt(H, t) = max
Ḣ

{
p(x , t)H − κ(H)− Φ(Ḣ) + VHḢ

}
- κ(H): operating costs; κ′ > 0, κ′′ > 0

- Φ(Ḣ): adjustment costs, Φ increasing in |Ḣ|, Φ′′ > 0 .

Can allow κ and Φ to vary across space.

Durability: Φ(−Ḣ) > Φ(Ḣ) for Ḣ > 0.

Abram & Rosenthal-Kay (UChicago) Urban Dynamics | Model 5 / 23



Equilibrium
Given A(x , t) and w(x , t), an eq’m is paths {p(x , t),h(x , t),n(x , t),H(x , t)} such that,

(i) given w(x , t) and p(x , t) households maximize utility: floorspace h(x , t) is optimally
demanded, and there is no opportunity for spatial arbitrage, u(x , t) = u(x ′, t) = ū(t);

(ii) Total population is constant:
∫ 1

0 n(x , t)dx = N;
(iii) given p(x , t), developers solve their HJB, optimally choosing floorspace paths H(x , t);
(iv) rental prices r(x , t) exhaust all development profit;
(v) housing markets clear at all locations and times, H(x , t) = n(x , t)h(x , t).

Spatial equilibrium pins down prices, p(x , t) =
(
ū(t)−1A(x , t)w(x , t)

)1/β
.

Lemma
A unique static equilibrium (Φ = 0) exists if κ′ > 0 is inevitable and κ′′ ≥ 0.

Lemma
The steady-state of the dynamic equilibrium is the static equilibrium.
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Equilibrium characterization
Envelope condition + time-differentiated optimality condition, the solution to the
developer’s problem is a second-order ODE in H,

ρΦ′(Ḣ)− Φ′′(Ḣ)Ḧ = p(x , t)− κ′(H)

If by a fixed T , p(x , t) → p(x ,T ), then this is a boundary value problem (BVP)

H(0) = H0, p(x ,T ) = κ′(H(T ))

Theorem
For an arbitrary price path p(x , t), the developer’s BVP has a unique solution.

Proof.
Following Keller (1966), we show boundary value problems of the form ÿ = f (y , ẏ , t),
y(0) = y0 and y(T ) = yT have a unique solution y ∈ C2 provided ∂f

/
∂y > 0 and∣∣∂f

/
∂ẏ
∣∣ ≤ M for some M ≥ 0. These conditions are met if κ′′ > 0 and

∣∣Φ′Φ′′′

(Φ′′)2

∣∣ ≤ M̃ for

M̃ ≥ 0 (true for power functions).
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Equilibrium as a PIDE

For expositional clarity, we now assume,

κ(H) =
H1+1/γ

1 + 1/γ
, Φ(Ḣ) =

ξ

2
(
Ḣ
)2

Then the equilibrium can be represented as a partial integro-differential equation,

ρξḢ(x , t)− ξḦ(x , t) + H(x , t)1/γ =
(
w(x , t)A(x , t)

)1/β ū(t)−1/β ,

ū(t) =

(
1
β

∫ 1

0
H(x , t)A(x , t)1/βw(x , t)1/β−1dx

)β

H(x ,0) = H0(x)
lim

T→∞
H(x ,T ) = H∞(x)

where H∞(x) is the steady-state solution.
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Model behavior: localized demand shock

- 3 identical locations

- unanticipated,
permanent shock to
location specific demand

A(1,0) ↑↑
A(2,0) ↑,
A(3,0) fixed

Demand shock at 1 ‘spills
over’ to location 2
(e.g., access to amenities). Figure 1: X-axis: time. Y-axis: % change in H.
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Model behavior: anticipation

- Announce shock some
periods prior

Green: arrival of shock
Blue: original paths
Red: new paths

Figure 2: X-axis: time. Y-axis: % change in H.

Abram & Rosenthal-Kay (UChicago) Urban Dynamics | Model behavior 10 / 23



Model behavior: localized demand shock – durable housing

Now, suppose,

Φ(Ḣ) =

{
ξU
2

(
Ḣ
)2 Ḣ ≥ 0

ξD
2

(
Ḣ
)2 Ḣ < 0

where ξU << ξD.

Blue: original paths
Red: new paths

Figure 3: X-axis: time. Y-axis: % change in H.
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Model behavior: localized demand shock – zoning

Now, suppose, H(1) ≤ Z .

Set Z = 90% steady state
H(1) without zoning.

Blue: original paths
Red: new paths

Figure 4: X-axis: time. Y-axis: % change in H.
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Quantification: San Francisco

Goal: Understand the transition dynamics associated with local demand and supply
shocks:

1. Demand shock: ‘Return to downtown’ (wages ↑ in downtown)

2. Upzone western parts of the city in light rail corridor (actual policy proposal)

Data:
- Structure characteristics and zoning status (OpenSF + Municipal Code)

- Floorspace prices Pennington (2021)

- Residency and commuting patterns (LEHD-LODES)

Abram & Rosenthal-Kay (UChicago) Urban Dynamics | Model behavior 13 / 23



Quantitative model: additions

Two features:
1. Commuting
2. ‘Quantitatively tractable’ zoning

Commuting:
- Workplaces will differ in TFP

- Households will commute based on idiosyncratic shocks and iceberg commuting
costs

- Allows us to recover wages with a gravity regression on commuting flows.
Commuting details

Zoning: Microfoundations + recovering restrictions from data
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Zoning is unobserved

In the model, zoning is a restriction, H(x) ≤ Z (x).

Problem: de facto zoning is unobserved

Parcels zoned RH-1...

“...are occupied almost entirely by single-family houses on lots 25 feet in width,
without side yards. Floor sizes and building styles vary, but tend to be uniform
within tracts developed in distinct time periods. Though built on separate lots,
the structures have the appearance of small-scale row housing, rarely exceeding
35 feet in height. Front setbacks are common, and ground level open space is
generous. In most cases the single-family character of these Districts has been
maintained for a considerable time. ” §209.1, San Francisco Municipal Code
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Zoning is unobserved – a model to recover zoning

Goal: A model of zoning restrictions that allows us to infer Z (x) from realized allocations.

Locations x have a measure of parcels T (x). Each parcel ω: can build floorspace with
final good and land,

hi(x , ω) = e(x , ω)c(x , ω)
γ

1+γ T (x , ω)
1

1+γ

e(x , ω) ∼ Gi , Gi Pareto(E(x), φ). Zoning restriction applies on a per-parcel basis,

h(x , ω) ≤ Z (x). Developers take floorspace prices p(x) and land prices r(x) as given.

Solution to developer’s problem: Develop most efficient parcels first,

H(x)︸ ︷︷ ︸
total floorspace

= T (x)

[
Zi
(
1 − Gx(ẽ)

)
+

∫ ẽ

E(x)
(p(x)e)γdGx(e)

]
, ẽ : cutoff productivity.

Implication: Bunching in the building height distribution at Z (x).
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Zoning data

Figure 5: Residential Zoning classifications for SF
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Zoning data

Figure 5: Building heights classifications for SF
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Bunching in the building height distribution - ‘RKD’

Figure 6: Left: Building Height Distribution. Right: Building Heights CDF for RH-1 and estimates of the kink in the derivative.

Estimate for parcel i in zoning classification C and cutoff K

Percentilei,C = α+ βC(K )× (hi,C − K )× 1(hi,C < K ) + f (hi,c ,K ) + ui,C

Estimate, ẐC = argmaxK β̂C(K ).
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Inversion

Data: locations are census tracts i . Given,
1. Si - share of parcels for which zoning binds,
2. E[wi ] (expected wages),
3. Ni (population),
4. pi (floorspace prices)
5. Parameters, β, γ, ϵ, φ

β γ ϵ φ

0.24 1.85 2.18 6

Can find unique Ai , Ei , Ti , and Zi that rationalize the data as a steady-state eq’m of the
model.

Si Zi Ai E[wi ]
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Counterfactual: return to downtown

Figure 7: Geography of the wage shock
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Counterfactual: return to downtown

Figure 8: Wage shock – time series
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Counterfactual: upzone Sunset District Light Rail Corridor

Figure 9: Locations upzoned

Abram & Rosenthal-Kay (UChicago) Urban Dynamics | Model behavior 22 / 23



Counterfactual: upzone Sunset District Light Rail Corridor

Figure 10: Locations upzoned
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Commuting – recover wages through gravity
- Households choose where to live x , based on expected wages E[w(x)]

- After location choice, productivity shock in efficiency units of labor,
ν(x ′) ∼Frechet(1, ϵ) is realized

- Pay commuting iceberg costs as fraction of the wage, τ(x , x ′)

- Workplace choice is then,

max
x ′

w(x ′)ν(x ′)/τ(x , x ′) =⇒ E[w(x ′) | x ] ∝
(∫

x ′

(
w(x ′)/τ(x , x ′)

)ϵ)1/ϵ

- Firms all produce same freely traded final good with linear technology,

y(x ′) = Q(x ′)L(x ′) =⇒ w(x ′) = Q(x ′)

- Under this structure, can recover τ(x , x ′) and Q(x ′) from a gravity regression on
commuting flows.

Back
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Inverted Si

Figure 11: Share bound by zoning

Back
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Inverted Zi

Figure 12: Recovered Zi

Back
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Inverted Ai

Figure 13: Recovered Ai

Back
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Inverted E[wi ]

Figure 14: Recovered E[wi ]

Back
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