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1 Theory

First, we consider the basic theoretical underpinnings of the Generalized Method of Moments
(GMM). This section is meant to aid in intuition and conceptual understanding, so the “proofs” are
missing details, and the mathematical assumptions are not all specified (i.e. things are differentiable
where and when we need them to be, but we say nothing more on that).

Most the below ideas, except for the examples, are essentially my watered down summary of
Ali Hortacsu’s lecture notes on GMM. They include more detail about the technical assumptions
needed.

1.1 Economic Assumptions

We start with an economic model that assumes a structure between the data, X, and parameters,
β, which we represent as E[F (X,β)] = 0. This is the end of our economic assumptions. Note that
this one assumption may be in terms of a scalar or a vector, and may potentially be simple (think
OLS, as below) or really complicated (the data could be financial data and the parameters govern
the process for returns or something).

1.2 Derivations in Brief

Let the dimension of β be k, and the dimension of F (X,β) be r. If r < k, we have too many
free parameters, and the model is under-identified. If r = k, the model is exactly identified,
assuming that the r conditions implied by F are linearly independent. If they are not, we are
essentially back in the r < k case. If r > k (and from here on out we assume that r is referring
the number of linearly independent conditions given by F ), then the model is over-identified.
Heuristically, when under-identified, we should be able to hit all the moment conditions and even
have dimensions(s) of freedom to play with. When identified, we should uniquely hit the moment
conditions. When over-identified, we cannot hit all the moment conditions, so what do we do?

Perhaps the most intuitive guess is to throw some moments away. If we let A be the k × r
matrix with a 1 in entry (i, i) for i ∈ 1, . . . , k and zeros elsewhere, then the following equation is
the case where we throw away the last r − k moment conditions.

AE[F (X,β)] = 0

∗Send corrections or comments to abram@uchicago.edu.
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This is pretty unsatisfying. Why did we throw those away, and not the first r − k? Or some
moments in the middle? Or some other linear combination of moments? It feels like there should
be an optimal way to do this, throwing away only the least helpful info, and it turns out there is!

Let’s first build an estimator. Let bN,A be the estimator we find by imposing that the “empirical
moment” is equal to zero, i.e.

0 = A

(
1

N

N∑
i=1

F (Xi, bN,A)

)
= AgN (bN,A)

This estimator will be consistent (I’m not going to provide the needed extra technical assump-
tions nor prove here), but how efficient is it? Let’s define

V ≡ var(F (X,β))

Now consider the following expansion

gN (bN,A) = gN (β) +DN (bN,A − β) +H(·)

DN =
1

N

N∑
i=1

∂F

∂β
(Xi, β)

TheH term is second-order and hence goes to zero “quickly” as bN,A → β. Using this expression,
we can consider the asymptotic distribution of the estimator by taking the following steps (notice
that I sloppily throw in the step where DN → D ≡ E[ ∂∂βF (X,β)]).

AgN (β) +ADN (bN,A − β) +AH(·) = AgN (bN,A)

= 0

⇒ AgN (β) ≈ −ADN (bN,A − β)

⇒
√
N(bN,A − β) ≈ −(AD)−1A

√
NgN (β)

= −(AD)−1A
1√
N

n∑
i=1

F (Xi, β)

→d N(0, (AD)−1AV A′(AD)′−1)

Where the last line is by the CLT. What have we gained? Now we know that we can choose
any A with rank k, and get a consistent estimator with variance as above. How do we choose A,
then?

Remember the Gauss-Markov Theorem (OLS is BLUE)? We can use the same proof approach
to show that the optimal choice is A∗ = D′V −1. Then the variance of the estimator achieves its
lower bound (in the positive semi-definite sense):

(
D′V −1D′

)−1
.
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1.2.1 Sidepoint on Exactly Identified Case

A natural question (that may help intuition) is whether A matters at all when r = k. In terms of
consistency and efficiency, the answer is no (provided A is non-singular). To see this, let A be any
non-singular matrix. Then, from above, the estimator’s variance will be

(AD)−1AV A′(AD)′−1 = D−1A−1AV A′(A′)−1(D′)−1 (A is square)

= D−1V D′−1

= (D′V −1D)−1

Thus, it does not matter what A we use, as it always achieves the efficiency bound. It may be
tempting to take the above transformations even in the over-identified case, but then some of the
terms will not even be well-defined.

So are these A identical in terms of estimation? Well no, we have only considered consistency
and efficiency, both of which are asymptotic properties. So different A may perform better in terms
of unbiasedness or some other finite-sample property. Actually this is a general critique of GMM
by many econometricians: it may perform horribly in finite samples, so is really only useful if we
have reason to believe that the asymptotics take over fairly quickly (for fairly small n sample size).

1.3 Computation

1.3.1 Direct

You should immediately say “Okay...but how am I supposed to pick A = D′V −1 if I don’t know β
(which will affect both terms)? I thought the whole point was to find β? Why are you telling me
the way to estimate β involves β?!”. Fair. The mathematical answer is that we view both D and
V as functions of bN,A. So we solve

D(bN,A)′V (bN,A)−1gN (bN,A) = 0

This is potentially a non-linear equation, and the application will determine how involved/tricky
solving it is. But in principle it is solvable numerically. We might also split the solving and iterate
until convergence, so something like

(i) Guess bN,A

(ii) Find implied D and V

(iii) Use D and V to find new bN,A

(iv) Repeat until convergence

1.3.2 Indirect (Quadratic Form Minimization)

The (more popular, I think?) way of implementing GMM is to view our problem as minimizing
the quadratic form

min
b
gN (b)′WgN (b)

3



Abram

where W is an r × r weighting matrix. In this case, the FONC1 is

(
∂

∂b
gN (b)

)′
WgN (b) = 0

Since the Jacobian term will go to D a.s., this condition becomes

D′WgN (b) = 0

Well hey, that means D′W = A, and we know optimally A = D′V −1, so optimally W = V −1.
Similarly to the direct approach, we can then calculate an approximation of V as a function of b
(this is just like in Azeem’s course), and we now have our problem as

min
b
gN (b)′[V (b)]−1gN (b)

Solving this problem will give us an estimate which is both consistent and efficient. Win!

As a final note, consider the difference between the two approaches. In the first case, we ask the
computer to solve a system of (potentially non-linear) equations. In the second case, we ask the
computer to solve a minimization problem. Which one is easier for the computer? I don’t know.
It probably depends on the problem at hand (are you seeing the theme?).

In practice this approach is implemented by the “Two-Step” GMM. Here are the steps:

(i) Pretend W = I (or really any invertible matrix), and solve for b by solving the minimization
problem

(ii) Use this estimate to construct an empirical estimate of V , then re-solve for b using W = V −1

We could iterate on this until everything converges, but in practice one iteration is often enough.
In fact, in terms of consistency, if we had an “infinite” amount of data, performing this two step
approach once will give the true values of β and V .

2 Examples

We now translate the above ideas into some well-known example estimators. This is meant to show
you that GMM is truly a generalization.

Please take all transposes with a grain of salt, though I think they are mostly correct.

2.1 OLS

Our first model is linear, and has uncorrelated homoskedastic errors

y = xβ + ε

E[x′ε] = 0

E[εε′ | x] = σ2I

1Use matrix calculus. The rules can be derived or Googled, as you prefer.
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Then we may translate

X ≡ (x, y)

β ≡ β
F (X,β) ≡ x′(y − xβ)

⇒ D ≡ E[
∂F

∂β
(X,β)]

= −E[x′x]

V ≡ E[(x′ε)(x′ε)′]

= E[x′εε′x]

= σ2E[x′x]

Then our moment condition gives

0 = E[F (X,β)]

= AE[x′(y − xβ)]

= D′V −1E[x′(y − xβ)]

= −E[x′x](σ2E[x′x])−1E[x′(y − xβ)]

⇒ E[x′y] = E[x′xβ]

⇒ β = E[x′x]−1E[x′y]

2.2 OLS (heteroskedastic correction)

Now suppose the errors may be heteroskedastic, so we cannot simplify beyond

V ≡ E[x′εε′x]

= E[x′(y − xβ)(y − xβ)′x]

Then the above calculation goes through with a minor tweak

0 = E[F (X,β)]

= AE[x′(y − xβ)]

= D′V −1E[x′(y − xβ)]

= −E[x′x]E[x′(y − xβ)(y − xβ)′x]−1E[x′(y − xβ)]

It now becomes apparent that this “minor tweak” actually makes our lives much more difficult.
In practice, we would start with regular OLS, calculate the implied heteroskedasticity correction,
then use that to re-estimate, and continue until convergence. It should be noted, however, that
instead of developing a whole new theory for solving this heteroskedasticity problem, GMM just
let us change one line of math, and recognize our estimator as solving a (potentially non-linear)
problem.
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2.3 IV/2SLS

Now we assume our error may be correlated with our regressors, but we have an instrument, z,
with dimension greater than or equal to x.

y = xβ + ε

E[ε] = 0

E[x′ε] 6= 0

E[z′ε] = 0

E[z′x] 6= 0

E[εε′ | z] = σ2I

Note that we have assumed the instrument is exogenous and relevant, and again returned to
homoskedastic errors. Let’s translate

X ≡ (x, y, z)

β ≡ β
F (X,β) ≡ z′(y − xβ)

D ≡ E[
∂F

∂β
(X,β)]

= −E[z′x]

V ≡ E[(z′ε)(z′ε)′]

= σ2E[z′z]

So we find

0 = D′V −1E[z′(y − xβ)]

= E[z′x]′(σ2E[z′z])−1E[z′(y − xβ)]

⇒ β =
(
E[z′x]′E[z′z]−1E[z′x]

)−1 (E[z′x]′E[z′z]−1E[z′y]
)

If we stop here, we have the two-stage least squares estimator, and we cannot go further if
the dimension of z exceeds x. However, if their dimensions are equal, we are in the instrumental
variables case, and the E[z′x] have proper inverses, so the above expression greatly simplifies into

β = E[z′x]−1E[z′y]

2.4 Something Spicier

Consider a “strangers on a train” model, wherein each set of covariates kills the errors for the other
model. We start with homoskedastic errors.
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y1 = x1β1 + ε1

y2 = x2β2 + ε2

E[εi] = 0

E[x′1ε1] 6= 0

E[x′1ε2] = 0

E[x′2ε1] = 0

E[x′2ε2] 6= 0

E[x′1x2] = E[x′2x1]
′ 6= 0

E[εiε
′
j | x1, x2] = σ2I1{i = j}

We translate into our GMM notation

X ≡ (x1, y1, x2, y2)

β ≡ (β1, β2)

F (X,β) ≡
[
x′2(y1 − x1β1)
x′1(y2 − x2β2)

]
D ≡ E

[
−x′2x1 0

0 −x′1x2

]
V ≡ E

[
x′2ε1ε

′
1x2 0

0 x′1ε2ε
′
2x1

]
= σ2

[
x′2x2 0

0 x′1x1

]
Without going through the remaining math, it should be clear at this point (from the fact that

D and V are block diagonal) that this resulting estimator is the same as if we just used each set
of covariates as an instrument for the other equation. So considering the joint estimator of the
whole system does not really buy us anything here, since it the same as estimating each system
separately.

Suppose we instead assume

E[εiε
′
j | x1, x2] = σ2I

Now the errors within a model do not interact, but they do interact with their corresponding
error in the other model.

V ≡ E
[
x′2ε1ε

′
1x2 x′2ε1ε

′
2x1

x′1ε2ε
′
1x2 x′1ε2ε

′
2x1

]
= σ2

[
x′2x2 x′2x1
x′1x2 x′1x1

]
Now to find the estimator we just need some matrix calculus, which is not too difficult, but would

not be instructive. The point you should take away, however, is that now, since V is not block-
diagonal, estimating the system jointly will generally be more efficient than estimating
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separately, even though we have the assumptions to do either. So you can choose to
estimate the system as two separate equations, and you will still get consistent estimates, but your
standard errors will be higher than if you estimated the system jointly, because you are not using
the optimal A matrix, whereas the joint system does use A∗ = D′V −1. Unfortunately, since this
system is exactly identified, this point is lost becauase we actually will have that it does not matter
what A we use, as long as it is nonsingular. If we had another moment for use in estimation, this
point would then be more clear.

2.5 Note on estimation

All the above examples just give an expression for β in terms of moments of distributions. To
actually perform the estimation, we would need empirical counterparts, then we need to show they
consistently estimate the objects of interest, and to do this we use all the rules about convergence
in probability and distributions (e.g. Slutsky’s theorem, etc.)
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