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This goal is to provide some intuition (and a quick derivation) for why normal conditioning
works so cleanly. Let X be an n-dimensional random vector

X ∼ N (µ,Σ)

Suppose n1 + n2 = n, and we want to consider regressing the last n2 componenent of X, call
it X2, on the first n1 components of X, call it X1. Let W be length n and consider the same
decomposition into W1 and W2, where

W ∼ N (0, I)

Assume Σ is positive definite. Then we can uniquely Cholesky-decompose Σ = CC ′, where C
is lower triangular. Now note that we may consider X as being constructed in the following way

X = µ+ CW[
X1

X2

]
=

[
µ1

µ2

]
+

[
C11 0
C21 C22

] [
W1

W2

]
Where Cij are blocks in the C matrix. Note that Cij has dimensions ni × nj (in particular C12

may be not square). Also note this implies

[
Σ11 Σ12

Σ21 Σ22

]
=

[
C11C11 C11C12

C21C11 C21C12 + C22C22

]
Then

X1 = µ1 + C11W1

⇒ W1 = C−1
11 (X1 − µ1)

X2 = µ2 + C21W1 + C22W2

= µ2 + C21C
−1
11 (X1 − µ1) + C22W2

In higher dimensions, I’m not aware of cleaner form than this one for the conditional expectation.
In the one variable case (n1 = n2 = 1) this becomes
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X2 = E[X2] +
Cov(X1, X2)

V(X1)
(X1 − E[X1]) + ϵ

Now we can find the distribution of X2 conditioned on X1, since we know that if two vectors
are jointly normal, then the conditional distribution of either, given the other, is also normal. Then
we only require the mean and covariance matrix.

E[X2 | X1] = µ2 + C21C
−1
11 (X1 − µ1)

V(X2 | X1) = C22C22

= Σ22 − C21C12

= Σ22 − C21C11(C
−1
11 C−1

11 )C11C12

= Σ22 − Σ21Σ
−1
11 Σ12
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