
Math Camp Lecture Notes

Autumn 2022

Chase Abram∗

June 13, 2023

Contents

1 These Notes 3

2 References 4

3 Assignments and Grading 5

4 Logic and Proofs 6
4.1 Truth and Fiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2.1 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2.2 Contraposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2.3 Contradiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2.4 Counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2.5 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2.6 Inspection/“It’s Obvious” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Miscellaneous Prelims 9
5.1 Jections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.4 Inner Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.5 Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.6 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Linear Algebra 16
6.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Eigenstuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 Jordan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.5 Symmetry and Definiteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

∗abram@uchicago.edu: These notes are mine...but of course I referenced many math texts and web pages when
writing. I think all the ideas (except where noted) are well-known enough math results that original authors are not
always cited/known.

1



Abram

7 Real Analysis 27
7.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 Sequences and Notions of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 Banach and Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 Continuity 36
8.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.2 Intermediate Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.3 Extreme Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.4 Hemicontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Differentiation 40
9.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.2 L’Hospital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.3 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.4 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.5 Inverse Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.6 Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

10 Fixed Point Stuffs 49
10.1 Contraction Mapping Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.2 Brouwer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.3 Kakutani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.4 General Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

11 Optimization 62
11.1 Unconstrained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
11.2 Equality Constrained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11.3 Inequality Constrained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.4 Envelope Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.5 KKT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.6 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

12 Conclusion 76

A Substitution and Income Effects 78

B CES Magic 85

C Firm Size and Supply Structure 90

2



Abram

1 These Notes

Some thoughts to kick us off:

1. Technically, I think I am covering the “micro” part of the camp, and Camilla the “macro”
part. In reality, I am macro-leaning, and that will no doubt show somewhat. Also, I am more
focusing on refreshing/teaching pure math that will be useful in the first year, so you should
use these concepts in micro, macro, and even metrics1.

2. Many times, I will state a proposition, example, or even problem somewhat vaguely. Some-
times this is unintentional, but often the reason is that if I leave it up to you to interpret
what is going on, you will learn more.

3. Sometimes examples in one topic will jump ahead or back to another topic. This is typically
because the core of the current example does not rely on deeply understanding the topic to
which we jump. Additionally, I assume everyone has at least a moderate familiarity with
calculus and linear algebra, but ...

4. ...if you don’t understand something, speak up and ask about it! There may be others who
don’t understand, and even if not, one purpose of math camp is get everyone on somewhat
the same page, and I may have overly omitted certain topics.

5. Don’t take what I am saying as gospel truth. If something seems off, or you believe could be
stated better, look into it! These notes function more as a primer and review than a proper
rigorous encyclopedia, so just like in real life and research, you will find gaps, and some you
may want to explore and fill. Stay curious!

6. I (probably) won’t be doing too much computational stuff with you all during the math camp,
but I’m a big fan of Julia. Happy to chat about that more (and I encourage you to use
Julia instead of Matlab in your courses this year).

7. The appendices were prepared because I covered the core material of the notes after the first
two weeks, so used the last week for cover some examples. They use math from the core
text, and also give a sampling of some basic economic ideas, in highly specific (mainly macro)
contexts.

8. All of this being said, I make mistakes. If you find issues or have questions feel free to contact
me via email: abram@uchicago.edu.

9. Last, but certainly not least: Please enjoy your few weeks of math camp. The expec-
tations for you are basically nil, you have plenty of free time to do whatever you want, and
are surrounded by people who you will soon be spending lots of time with. I suggest relaxing,
exercising, exploring Chicago, and generally having a fun last hurrah. It will be much better
for your mental health than trying to do math/econ in your free time outside of lectures,
which you will soon do anyway.

1Especially metrics for linear algebra.
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2 References

You will need math stuff outside of these notes for the first-year. Wikipedia is often a fantastic
source for math concepts, largely because people edit the pages until they are clear and correct.
Some of my personal favorite other math references (in no particular order):

1. (J. Hubbard and B. Hubbard, 2009): Probably the weirdest math textbook I’ve ever seen. I
used it for two semesters of calculus, hated it the whole time, then later realized it taught me
a ton that other books miss. It covers what the title says, but be warned the difficulty amps
up quickly. Many of the exercises are tricky, and the proofs use strange notations. Worth a
read if you like this math.

2. (Rudin, 1976): This little blue book is the absolute gold standard for learning real analysis.
Proofs are clean and elegant, and you should be able to follow the book only knowing a little
multivariable calculus. Only downside is that the differential forms section is a bit weak, and
examples are bit lacking throughout. But the problems cover some of the “obvious” missing
examples.

3. (Royden and Fitzpatrick, 2010): Excellent first-year math PhD analysis text. Notation is
clean and the introduction to measure theory is beautiful, with lots of great exercises and
examples.

4. (Spivak, 1965): Parts of it are basically a worse version of Rudin, but the material on manifolds
and differential forms is better. Probably the easiest way to get to Stokes’ theorem, if you
care.

5. (Luenberger, 1969): Excellent for linear algebra and basic functional analysis. The approach
of viewing optimization as a projection problem helps put some econometric ideas on a math-
ematical footing, which is appealing. Big plus is that lots of stuff is in one place (lin alg,
analysis, optimization)

6. (Evans, 2010): This book is too smart for me, but I’ve used it a little. It starts from the
foundations and builds up PDE theory (which is an order of magnitude harder than ODE
theory, generally).

7. (Strogatz, 2018) A more approachable way to learn ODE ideas, but also goes deeper than
some other ODE books. Big strength is examples galore, with pictures!
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3 Assignments and Grading

If this has not already been made clear, allow me to clarify: you are not being assessed on your
performance during Math Camp. Some programs include a course like this one as part of their
first-year courses that must be passed, but we do not. We will use Canvas for communication and
I might even post “Assignments” purely to provoke thinking, but entirely ignoring them will not
be detrimental to you in terms of passing the Core.
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4 Logic and Proofs

At the end of the day, most any discussion in economics (or most fields) comes down to what we
assume, and what we are deducing from what we assume. This is probably somewhat more obvious
when you think of micro theory results, wherein we assume nice mathematical properties, then use
them to deduce results, but it also applies to empirical work. When you are in a seminar and an
argument breaks out about identification, that is someone saying “I assume X about this economic
problem, and in that case your estimation procedure does not do what you claim it does, because
you assume Y ”. In the first year you will spend nearly all your time learning how to move from
assumptions to conclusions, but don’t lose sight of the fact that the assumptions are the core of
whatever you are doing. If you assume people are rational, you may get agents that are able to
solve problems which we cannot even solve with computers. If you assume people’s preferences take
into account habit formation, you should not be surprised when habits arise in your equilibrium.

4.1 Truth and Fiction

For these notes, and probably most of our careers, we will be working with first-order binary logic.
So a statement P is either true or false, no in between.

Example 4.1. “Hummingbirds can fly” is a true statement (if an object is a hummingbird, then
it can fly), but “birds can fly” is false (if an object is a bird, then it can fly), since there exist birds
that cannot fly.

Note that it may be tempting to check examples of statement being true in certain cases, but for
the statement to be true, we need it to be true in all cases.

Example 4.2. Consider the Borwein integral. If you only check the pattern for n = 1, 3, . . . , 13
you will conclude the integral is π

2 always, and if you are sloppy you might convince yourself it
holds at higher numbers, even though the pattern breaks at n = 15.

We now clarify some of the above ideas.

Definition 4.1. Let X be a set, and P be a statement about X.

1. We say ∀x ∈ X,P (x) to mean that if x ∈ X, then P (x)

2. We say ∃x ∈ X,P (x) to mean that there is at least one x ∈ X, such that P (x)

You might notice something bizarre: ∀x ∈ X,P (x) when X is empty, but we never have ∃x ∈
X,P (x) when X is empty.

4.2 Proof

A proof is a means of combining assumptions with logic to show whether a statement is true or
false. There is sometimes discussion of “level of rigor” of proofs, but really a proof is either right or
wrong, and when people discuss rigor, they are referring to the amount of assumptions allowed to
be used in the proof. In the worst cases, however, someone will essentially assume the conclusion
of the proof in making the proof. That’s not bad rigor, that’s just wrong.

There are many types of proofs, and sometimes one is easier/better than another, depending on
the problem at hand. Additionally, we often use previous results to build new results (this is how
modern mathematics is built).

6
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4.2.1 Direct

Direct proofs are what you typically picture as a proof. They take some assumptions and concate-
nate them logically into a result directly.

Example 4.3. We want to prove
∑n

i=1 i =
n(n+1)

2 . We may do the following calculation

n∑
i=1

i =
1

2

(
2

n∑
i=1

i

)

=
1

2

(
n∑

i=1

(i+ [n− i+ 1])

)
(Reverse term order for second set)

=
1

2
n(n+ 1)

Though not usually considered a separate technique, constructive proofs also fall under the category
of direct proof. By construction, I mean a proof wherein we want to show that something exists,
and do to so we just find an example of it existing. Note that this is special to an existence proof,
and generally examples do not prove generalities.

Example 4.4. We want to prove there exists a function which is continuous everywhere and has
zero derivative almost everywhere, but is not constant. Note that this sounds kinda impossible,
since we are demanding that the function can basically never change, and when it can it can only
do so by an infinitesimal amount. But consider the Devil’s Staircase.

4.2.2 Contraposition

Contraposition is like direct proof, but negating a negative. The idea is that if we want to prove
that P implies Q, we could instead prove that Q not true implies P not true. If this is proven,
then P being true must imply Q is also true.

Example 4.5. We want to prove “if x2 is even, then x is even”. The contrapositive statement is
“if x is not even, then x2 is not even”. Since the product of two even numbers is even, and two
odd numbers is odd, if x is not even, then x is odd, so x2 is odd, so x2 is not even.

4.2.3 Contradiction

This is economists’ favorite proof method, though I once had a maths prof tell me that almost all
contradiction proofs can be made direct with a little effort, and I once heard an economist refer to
this as the “weenie”-style proof. The basic idea is that you assume the conclusion is false, then you
show that your assumptions are contradicted, therefore your assumption about the false conclusion
was wrong.

Example 4.6. Here is a classic. We want to prove
√
2 is irrational. Suppose it is rational (this is

the assumption we will show is wrong). Then
√
2 = p

q for some p, q ∈ N, where p and q are coprime

(pq is reduced as much as possible). Then square both sides and move q, so 2q2 = p2. The left side

is even, so the right side must also be even, hence p is even. Then p2 must be divisible by 4, say

p2 = 4r, r ∈ N.Then q2 = p2

2 = 4r
2 = 2r is also even. But then p and q were not in lowest common

form, we have a contradiction. Hence
√
2 is not rational.

7
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4.2.4 Counterexample

This type of proof is only useful for showing a general statement is false. The idea is that we can
find one instance where a statement does not hold, therefore the whole statement is false.

Example 4.7. Euler had a conjecture. A computer helped find a counterexample.

4.2.5 Induction

This one is tricky if you have not seen it before. The idea is that we prove something for a base
case (usually n = 0 or n = 1), then show that if it holds for case n, it also must hold for case n+1.
This then proves the statement for all n. You can reason this out by considering that if you prove
for n = 1, then the n ⇒ n + 1 inductive step implies it holds for n = 2. But then the inductive
step also shows it holds for n = 3. But then the inductive step...
I like to visualize this as dominoes falling. We push the first domino n = 1, then check that every
other domino is close enough that, when the domino before it falls, it too will fall. Then all the
dominoes will fall!

Example 4.8. We want to prove
∑n

i=1 i = n(n+1)
2 (this is the same as above, yes, and we are

showing there are multiple ways to prove the statement). Let’s check this for n = 1:
∑1

i=1 i = 1 =
1(1+1)

2 . Great. Now suppose it holds for the case n, the n+ 1 case is then

n+1∑
i=1

i = n+ 1 +
n∑

i=1

i

= n+ 1 +
n(n+ 1)

2

=
2(n+ 1) + n(n+ 1)

2

=
[n+ 1]([n+ 1] + 1)

2

4.2.6 Inspection/“It’s Obvious”

Sometimes you will look at a problem and it is just obviously true, right? No. If it is obvious, then
there exists a method of proving it that relies on assumptions and logic. So this proof technique is
not valid. Most “proofs” of the Riemann Hypothesis use this fallacy at some point.

8
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5 Miscellaneous Prelims

First, we will lay out a handful of definitions and miscellaneous ideas. This section will feel dis-
jointed, but the idea is that I am handing you some of the fundamental tools you will need through-
out right now, and you can reference back when needed.

It will be quite helpful to have terms precisely describing how functions may map between spaces
in nice ways.

5.1 Jections

Definition 5.1. A function f : X → Y is

(i) injective2 if for all x, x′ ∈ X, x ̸= x′ implies f(x) ̸= f(x′)

(ii) surjective3 if for all y ∈ Y , there exists x ∈ X such that f(x) = y.

(iii) bijective4 if both injective and surjective

Intuitively, we may think that if there exists an injection from X to Y , then Y is at least as big as
X, and vice versa if there exists a surjection. For finite sets, this works exactly as we would like
via the pigeonhole principle, which hilariously says that if you try to smash more pigeons through
holes than the number of holes you have, you must smash at least two pigeons through the same
hole5. Not so if the sets have infinitely many elements.

Example 5.1. The function f(x) = x+ 1 is an injection from N \ {0} to N.

Problem 5.1. Find a surjection from N \ {0, 1, . . . , 1010} to N.

Solution: The mapping f(x) = x− 1010 works.

Example 5.2. Functions which are strictly monotonic (derivative strictly greater than 0) are
injective R → R.

Example 5.3. Functions which are continuous and have limits at ±∞ are surjective R → R.

5.2 Cardinality

Definition 5.2. A set X is called

(i) Finite if there exists an n such that there exists a surjection from {1, . . . , n} to X

(ii) Countable if there exists a surjection from N to X6

(iii) Uncountable if not countable

Problem 5.2. Are the rationals countable? Find a surjection if so, or prove that one does not
exist if not.

2one-to-one
3onto
4invertible
5Oh that’s not how you think of the pigeonhole principle?
6Really this is the def for “at most countable”. To be sure a set is exactly countable (not finite) we would require

a bijection from N to X.
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Solution: The rationals are countable. Represent the (positive) rationals by a grid which has the
numerator on the horizontal axis, and the denominator on the vertical axis. This will multiple
count rationals, because, for example, (n, 2n) → 1

2 , for all n ∈ N, but that’s fine, it will just mean
we are more than covering what we need. Now for the surjection, consider the mapping wherein
as we move along N we cover the diagonals, by moving along the entries in the n-the diag as
(1, n), (2, n− 1), . . . . , (n− 1, 2), (n, 1). The mapping is a surjection because for any given rational
(say q), we just find one of its representations (say n

m), and then move out along the diags as
decribed above to find the k ∈ N such that the mapping sends k to q. Note that this is not a
bijection, since the pre-image of any given rational will be infinitely many integers.

Problem 5.3. Are the reals countable? (Hint: look up Cantor’s diagonalization argument and be
careful.)

Solution: The reals are not countable. Cantor’s proof is to assume they are countable, enumerate
them, then show that reals are missing, hence they cannot be countable.
Suppose the reals are countable. Then every subset of the reals is also countable (just use the same
surjection), so let B ⊂ R be the subset which has only 0 or 1 in every decimal position, and for
simplicity also require these numbers to be in [0, 1). Then let f : N → B be a surjection, which
exists since B is countable. Now consider a new number r which has n-th decimal either 0 or
1, but it is the opposite of the corresponding decimal of the f(n), e.g. if f(3) = 0.11010, then
r = 0.xx1xx, where the x are decimals determined by values other than f(3). Since each decimal
is different from f(n) in the n-th place, r ̸∈ f(N). However, since r has only 0 or 1 in each place,
and is in [0, 1), we have r ∈ B, contradicting B ⊆ f(N), for our arbitrary f surjection. So B is not
countable, and therefore R is not countable.

Example 5.4. Let a < b and c < d. Then f(x) = d−c
b−a(x−a)+c provides a surjection [a, b] → [c, d].

It is also an injection, therefore a bijection.

Problem 5.4. Let a1 < b1 < a2 < b2 < . . . < an < bn and c < d. Also let X =
⋃n

i [ai, bi] and
Y = [c, d]

(i) Provide an injection from X to Y .

Solution: Choose subsets [ci, di] ⊂ Y which are distinct. Then send [ai, bi] to [ci, di] in the
same manner as the example above. Then, since the subsets [ci, di] are disjoint, the map is
injective.

(ii) Provide a surjection from X to Y .

Solution: Send [a1, b1] to [c, d] in the same manner as above, and it doesn’t matter where
the other [ai, bi] are mapped to, since [c, d] is already covered, hence the map is surjective.

(iii) Does there exist a bijection between X and Y ?

Solution: Yes, but it’s not obvious. Thanks to Yu-Chi Hsieh for bringing this to my attention,
since I originally thought the answer might be no!

Partition [c, d] into {[c1, d1), [c2, d2), . . . , [cn, dn]} (notice the open right bracket on all but the
last set). Send [an, bn] to [cn, dn] as before, and we are left with the problem of bijectively
mapping [ai, bi] to [ci, di). This is the same problem as mapping [0, 1] to [0, 1), so I will work
with those sets for simplicity. The key is to find a subset with infinitely many points, and
“shift” them left. To be concrete, consider the set D ≡ { 1

2n : n ∈ N ∪ {0}} ⊂ [0, 1], and
the mapping f : [0, 1] → [0, 1) which sends x 7→ 1

2x for x ∈ D, and is the identity (x 7→ x)

10
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otherwise. This map is a bijection, and its inverse is x 7→ 2x for x ∈ D, and the identity
elsewhere. Then we are done, because we just apply this idea to map [ai, bi] to [ci, di).

Sidenote: Something about this feels wrong... we have a bijection from a closed set to a “half-
closed” set, so maybe something is topologically weird? It is. The mapping is not continuous,
so not a homeomorphism. To see this, note that the pre-image of (14 ,

3
4) (an open set) is

(14 ,
1
2) ∪ (12 ,

3
4) ∪ {1} (not an open set).

5.3 Norms

Definition 5.3. A norm ∥ · ∥ : X → R satisfies the following properties:

(i) ∥x∥ ≥ 0 for all x ∈ X, and ∥x∥ = 0 iff x = 0

(ii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥

(iii) ∥αx∥ = |α| · ∥x∥ (α is a scalar)

Problem 5.5. Are the following norms? Verify if so, and if not, identify which property is not
satisfied.

(i) ∥x∥2 =
√∑n

i=1 |xi|2

Solution: Yep. Only tricky one is triangle inequality. To prove crucial inequality step, we
need a simple version of the Cauchy-Schwarz Inequality, which we can prove quickly with a
slick reference to quadratic equations that I have stolen from Wikipedia. First, note

0 ≤
∑
i

(xiz + yi)
2 (Squares non-negative)

= (
∑
i

x2i )z
2 + 2(

∑
i

xiyi)z +
∑
i

y2i

The above is a quadratic function in z which is non-negative, so there is at most one real
root, so the discriminant (the b2 − 4ac term under the

√
in the numerator of the quadratic

equation) is non-positive, so

4(
∑
i

xiyi)
2 − 4(

∑
i

x2i )(
∑
i

y2i ) ≤ 0

giving what we need, namely

(
∑
i

xiyi)
2 ≤ (

∑
i

x2i )(
∑
i

y2i )

Now we can turn to the

11
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∥x+ y∥22 =
∑
i

(xi + yi)
2

=
∑
i

x2i + y2i + 2xiyi

≤
∑
i

x2i + y2i + 2

√
(
∑
i

x2i )(
∑
i

y2i )

= ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥
= (∥x∥+ ∥y∥)2

(ii) ∥x∥ℓ = |x1| (x is still n-dimensional)

Solution: No. Consider if n = 2 and x = (0, 1). Then ∥x∥ℓ = 0, but x ̸= 0.

(iii) ∥x∥∞ = max{|x1|, . . . , |xn|}
Solution: Yes. All properties are easy to verify, just mechanical.

(iv) ∥x∥−∞ = min{|x1|, . . . , |xn|}
Solution: No. Consider if n = 2 and x = (0, 1). Then ∥x∥−∞ = 0, but x ̸= 0.

5.4 Inner Product

Definition 5.4. An inner product ⟨·, ·⟩ : X ×X → F satisfies the following properties, where F is
a field.

(i) ⟨λx, y⟩ = λ⟨x, y⟩, λ ∈ F

(ii) ⟨x+ z, y⟩ = ⟨x, y⟩+ ⟨z, y⟩

(iii) ⟨x, y⟩ = ⟨y, x⟩

(iv) ⟨x, x⟩ ≥ 0, with equality only if x = 0

Theorem 5.1 (Cauchy-Schwarz). On an inner product space, if we consider the norm as the one
induced by the inner product, then for all x, y ∈ X, we have |⟨x, y⟩| ≤ ∥x∥∥y∥

Definition 5.5. We say two elements are orthogonal if their inner product is zero.

A common inner product in Rn is the dot product ⟨x, y⟩ ≡
∑n

i=1 xiyi, and unless stated otherwise,
this is the default inner product for Rn.

Problem 5.6. Some orthogonality practice. (Don’t just put the zero vector, you know that is
lazy.)

(i) Find a vector orthogonal to (1, 2, 3).

Solution: Easy way to proceed: choose vector (1, 2, z), where z is to be determined (the 1
and 2 are arbitrary choices). It will satisfy

0 = 1 · 1 + 2 · 2 + 3 · z

So z = −5
3 and the vector is (1, 2,−5

3).

12
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(ii) Find two vectors orthogonal to (1, 0, 1) which are also orthogonal to each other.

Solution: We can do the same thing as above, but it becomes a system of equations. First,
using the same stragegy as above, one vector is (1, 2,−1). Now we need a vector (x, y, 1)
which is orthogonal to both vectors.

0 = x+ 1

0 = x+ 2y − 1

So x = −1, y = 1, and the third vector is (−1, 1, 1).

Alternatively, you could just pick one orthogonal vector as above, then take the cross-product
of that vector with the original to find an orthogonal vector.

(iii) Consider the inner product ⟨x, y⟩ =
∫ π
−π x(t)y(t)dt. Under what conditions for m (an integer)

is cos(mx) orthogonal to sin(nx) (n also an integer)?

Solution: You can get fancy with trig identities, but it get’s kinda gross. Instead, just
note that cos(mx) sin(nx) is an odd function, since cos is odd and sin is even, and therefore
integrating it over an interval centered at 0 wil always yield zero. Therefore cos(mx) is
orthogonal to sin(nx) for any n,m ∈ Z.

5.5 Homogeneity

Definition 5.6. A function f is homogeneous of degree α if f(λx) = λαf(x) for all λ ∈ R.

Example 5.5. Linear functions are homogeneous of degree 1.

Example 5.6. Constant functions are homogeneous of degree 0.

Problem 5.7. What can we say about the degree of homogeneity of production functions that
are decreasing, constant, and increasing returns to scale (assuming they are homogeneous of some
degree)?

Solution: If decreasing returns to scale, then f(λx) < λf(x) if λ > 1, and since f(λx) = λαf(x)
for some α, it must be the case that α < 1. Similarly, we find constant implies α = 1, and increasing
implies α > 1.

Problem 5.8. Let f(x) =
∏n

i=1 x
γi
i What is the degree of the homogeneity of f?

Solution:

f(λx) =
∏

(λxi)
γi

= λ
∑

i γi
∏

xγii

= λ
∑

i γif(x)

So the degree is
∑

i γi. Many papers/proofs assume
∑

i γi = 1 which simplifies results (and there
are a variety of arguments why this may or may not be empirically logical in a variety of settings).

Problem 5.9. If a function f is homogeneous of degree r, show that its derivative is homogeneous
of degree r − 1.

13
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Solution: We just do things to both sides of the equation for the definition.

f(λx) = λrf(x)

λf ′(λx) = λrf ′(x) ( d
dx)

f ′(λx) = λr−1f ′(x) (Divide by λ)

Theorem 5.2 (Euler). If f is homogeneous of degree r, then Df(x) ◦ x = rf(x).

Proof.

f(λx) = λrf(x) (Def.)

Df(λx) ◦ x = rλr−1f(x) (∂λ)

Df(x) ◦ x = rf(x) (At λ = 1)

5.6 Convexity

Definition 5.7. A set C is convex if, for all x, y ∈ C, λ ∈ (0, 1), we have λx+ (1− λ)y ∈ C.

Intuitively, in convex sets you can draw lines between any of the points, and the lines stay inside
the set. This property is quite nice for when we want to consider a “mixture” of set elements, but
want to remain inside the set.

Example 5.7. Recently, I was interested in better understanding the set A(x) ≡ {A : Ax =
x, aij ≥ 0,

∑
j aij = 1} for some given x7. It turns out this is not the easiest set to imagine or

ascribe simple properties. But it is convex, since if A,B ∈ A(x), then

(λA+ (1− λ)B)x = λAx+ (1− λ)Bx

= λx+ (1− λ)x (A,B ∈ A(x))

= x

and non-negativity and summing to unity are also easy to check. Thus, λA+ (1− λ)B ∈ A(x).

Problem 5.10. Find an example of a (non-singleton) set which is convex, and a set which is not
convex, in each of:

(i) R
Solution: Convex: (a, b). Not convex: (a, b) ∪ (b+ 1, c)

(ii) R2

Solution: Convex: {(x, y) : x2 + y2 ≤ 1}. Not convex: {(x, y) : x2 + y2 = 1}

(iii) The set of functions f : R → R
Solution: Convex: the set of functions which are continuous on some interval [a, b]. Not
convex: the set of functions which take values only 0 or 1 (a convex combination will take
intermediate values).

7It can be shown that A(x) is isomorphic to the set of transportation polytopes with marginals x in both dimen-
sions.
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Definition 5.8. A function f is quasi-convex (quasi-concave) if either of the following equivalent
statements hold, for every x, y ∈ X, λ ∈ (0, 1)

(i) f(λx+ (1− λy) ≤ max{f(x), f(y)} (≥ min{f(x), f(y)})

(ii) Given arbitrary α ∈ R, the set {x | f(x) ≤ α} ({x | f(x) ≥ α}) is convex

Definition 5.9. A function f is convex (concave) if, for every x, y ∈ X, λ ∈ (0, 1), f(λx+(1−λ)y) ≤
λf(x) + (1− λ)f(y) (≥ λf(x) + (1− λ)f(y)). We can add strictness when the inequality becomes
strict.

Quasi-convexity disciplines what sublevel sets are allowed to exist for a function, and convexity
discplines the rate of change of the rate of change of a function.

Problem 5.11. Show that convex functions are quasi-convex.

Solution:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (Def. of convex)

≤ λmax{f(x), f(y)}+ (1− λ)max{f(x), f(y)}
= max{f(x), f(y)}

Theorem 5.3. Convex functions f : R → R are continuous.

The typical (only?) proof of this theorem requires the Chordal Slope Lemma, which you will
encounter in fall metrics.

Problem 5.12. Find a quasi-convex function that is

(i) Convex

Solution: Any convex function will do. Say f(x) = x2)

(ii) Quasi-concave8

Solution: Any monotonic function will work, such as f(x) = x, or f(x) = arctan(x).

(iii) Concave

Solution: We need a function which is concave, but the sublevel sets are convex. Any concave
and monotonic function will work, such as f(x) = log(x).

(iv) Neither convex nor concave (over its whole domain, that is)

Solution: Again, monotonic functions are quasi-convex, so we can just pick one that is
concave for some intervals and convex for others. The example f(x) = arctan(x) works again.

8Being both, this function will be quasi-linear.
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6 Linear Algebra

Linear algebra is the tool that lets us work in higher dimensions and analyze the structure of
systems.

6.1 Basics

Definition 6.1. A vector space X is a set of elements which is closed under the operations of
addition and scalar multiplication. This means

(i) x, y ∈ X implies x+ y ∈ X

(ii) x ∈ X, α ∈ F9 implies αx ∈ X

Problem 6.1. Show that Rn is a vector space if F = R and we define + by component-wise
addition.

Solution: Just check that adding two vectors in Rn element-wise returns a vector in Rn, and that
scaling by a vector also returns a vector in Rn. Pretty mechanical.

Example 6.1. The space of n ×m matrices is a vector space with the standard component-wise
definition of addition.

Example 6.2. The space of periodic function on a given interval is a vector space, since combining
periodic functions gives another periodic function.

Problem 6.2.

(i) Is the space of continuous function such that f(0) = f(1) = 0 a vector space?

Solution: Yes. Add two such functions and the result will still be a continuous function, and
still have f(0) = f(1) = 0. The scaling will not affect the continuity, and anything (finite)
times 0 is still zero.

(ii) What about if we require f(0) = f(1) instead?

Solution: Yes. Add two such functions (say h = f+g) and the result will still be a continuous
function, and we will have h(0) = f(0)+g(0) = f(1)+g(1) = h(1). The scaling will not affect
the continuity nor the endpoint result.

(iii) What about f(0) = 1 instead?

Solution: No. Add any two such functions and the result will have h(0) = 2.

Definition 6.2. A set of elements {xi} is linearly dependent if there exists a set of scalars {ai}, not
all zero, such that 0 =

∑
i aixi. If such scalars do not exist (i.e. the only way to have 0 =

∑
i aixi

is if ai = 0 for all i), then the set is linearly independent.

Problem 6.3. Find a pair of linearly independent vectors in Rn, for n = 1, 2.

Solution: For n = 1, any non-zero number will do.
For n = 2, the canonical basis (1, 0) and (0, 1) is easiest.

9F is some field with which we are defining the vector space with respect to. In all of our applications F ∈ {R,C}.
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Definition 6.3. A set {si} spans the set S if, for any s ∈ S, there exists scalars {ai} such that
s =

∑
i aisi.

Problem 6.4. Find a set that spans Rn, for n = 1, 2, but is not linearly independent.

Solution: For n = 1, just use the vector (1) and any other number (r). Then R is spanned, because
c = c · (1) for any c ∈ R, and the set is not linearly independent because 1 · (1) + (−1

r ) · (r) = 0.
For n = 2, use (1, 0), (0, 1), (2, 3). Then we again span because (c, d) = c · (1, 0)+d · (0, 1)+0 · (2, 3),
but are linearly dependent because (−2) · (1, 0) + (−3) · (0, 1) + 1 · (2, 3) = 0.

Definition 6.4. A basis {bi} for a vector space X is a set of elements that are linearly independent
and span X. We refer to |{bi}| as the dimension of the space X. If every element of the basis is
orthogonal to all other basis elements and has norm 1, then the basis is orthonormal.

Problem 6.5. Find a basis for each of the following spaces:

(i) Rn

Solution: The standard basis vectors {e1, . . . , en}, where ei is the zero vector except for a 1
in the i-th spot.

(ii) The set of functions f : R → R which only take nonzero values at {x1, . . . , xn} ∈ R
Solution: Let fi be the function which is zero everywhere except at xi, where it is 1. Then
{f1, . . . , fn} is a basis.

(iii) The set of n-dimensional square matrices

Solution: The size n2 set of matrices with a zeros everywhere except at a single entry.

(iv) The set of n-dimensional square symmetric matrices

Solution: The size n(n+1)
2 set of matrices with zeros everywhere except at the (i, j) and (j, i)

location, for j ≤ i. When j = i there is only one entry.

6.2 Transformations

Definition 6.5. Let X and Y be vector spaces. A transformation T : X → Y assigns each element
x ∈ X to some element y ∈ Y . If X = Y , then T is an operator.

Note there is no requirement about uniqueness.

Example 6.3. The function f : R2 → R2 defined f(x, y) = (x2 + y2, sin(x) ∗ pl(y), where pl(y)
is the number of primes less than y, is a transformation. I have made it intentionally gross to
emphasize the current freedom, before we impose more restrictions.

Operators are ubiquitous, even though we often just call them “square matrices” or talk about them
without using the word operator. I prefer starting with this super abstract definition so that we can
encapsulate lots of different settings, including infinite dimensional spaces, which are increasingly
important to understand, as the equilibrium to many economic models is a distribution or function,
both of which live in infinite-dimensional spaces.

Example 6.4. (Allen and Arkolakis, 2014) has lots of neat math. On page 1094, the two equations
introduced can be viewed as the following operators
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Φ(i)[x] =

∫
S
W (s)1−σT (i, s)1−σA(i)σ−1u(s)σ−1x(s)ds

Ψ(i)[x] =

∫
S
W (i)1−σT (s, i)1−σA(s)σ−1u(i)σ−1x(s)ds

These are adjoint, which basically means Ψ is the “transpose” of Φ (we won’t really get into this).
At this point in the notes this is probably all confusing, but the idea is that you have now seen a
real application of how operators are used, and you can return after we talk about other stuff and
you feel more comfortable.

Definition 6.6. The kernel of a transformation f : X → Y is the set K ⊆ X such that x ∈ K
implies f(x) = 0.

Definition 6.7. The image of a transformation f : X → Y is the set I ⊆ Y such that y ∈ I implies
there exists x ∈ X such that f(x) = y.

Problem 6.6. Find the kernel and image of the following transformations. Let F be the set of
functions from [0, 1] to R:

(i) f : R → R, f(x) = x2

Solution: Kernel: {0}, Image: non-negative reals

(ii) f : F → R, f(x) =
∫ 1
0 x(t)dt

Solution: Kernel: I don’t know of a better way to describe the set than just the set of
functions which integrate to give 0, Image: R

(iii) f : F → F , f(z)[x] = x(z)2

Solution: Kernel: The only function that can be squared and still be everywhere zero is
the zero function, Image: Squaring will make each number non-negative, so the image is the
non-negative functions in F

(iv) The above trade example (just kidding)

Definition 6.8. A transformation T : X → Y is linear if, for any x1, x2 ∈ X, α1, α2 ∈ F , we have
T (α1x1 + α2x2) = α1T (x1) + α2T (x2).

This really cuts down on what T can be.

Example 6.5. The mapping T (x, y) = (5x+ 3y, 7y) is linear.

Problem 6.7. Consider the space of all sequences in R, and the shift operator T : RN → RN

defined by T ((x1, x2, . . . , )) = (x2, x3, . . .). Is T linear?

Solution: Yes. This is mechanical to check.
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6.3 Eigenstuff

Now we turn to eigenstuff. My feeling is that most people either learn this and conclude it is
meaningless technicalites, or conclude that it is crucial to understanding the properties of a linear
transformation. I’m gonna try to get everyone into the second camp.

Definition 6.9. An eigenvector of a linear transformation T is a non-zero element x ∈ X for which
there exists λ ∈ F such that Tx = λx. The eigenvalue corresponding the eigenvector is λ.

Example 6.6. Consider the following matrix

A =

[
2 1
1 2

]
The map T : R2 → R2 defined by Ax is a linear transformation. It is easy to check that if
x = (1,−1), then Ax = (1,−1) so (1,−1) is an eigenvector with eigenvalue 1.

We now want to understand why eigenvalues matter for linear transformations.

Definition 6.10. The determinant is the product of the eigenvalues of a linear transformation.

Definition 6.11. The trace is the sum of the eigenvalues of a linear transformation.

Maybe these are familiar definitions, or maybe you are currently saying “that’s the wrong defini-
tion. I know the determinant is the thing where you take the product of each element going down a
column of a matrix, but each element multiplies the submatrix...” Yes. That is one way to compute
the determinant. But this definition makes it more obvious that the determinant is tied to the
eigenvalues.

Let’s consider how to find eigenvalues. Consider

Ax = λx

⇒ (A− λI)x = 0

Therefore if λ is an eigenvalue of A with eigenvector x, then 0 is an eigenvalue of A − λI with
eigenvector x. Therefore the determinant of A− λI will also be 0. Conversely, if 0 is an eigenvalue
of A − λI, there exists non-zero x such that (A − λI)x = 0, meaning Ax = λx. Thus, finding
eigenvalues of A is equivalent to solving

det(A− λI) = 0

If we carry out the determinant calculations, the above equation will reduce to a polynomial in λ,
motivating:

Definition 6.12. The characteristic polynomial of A is p(λ) = det(A − λI). Its roots are the
eigenvalues of A.

With small dimensions, this gives us a nice way to find roots with pen and paper. More generally, we
can use a computer with a simple nonlinear solver to find the roots (polynomials are well-behaved).
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Problem 6.8. Consider the following matrix (again)

A =

[
2 1
1 2

]
Use the previous determinant formula to find the characteristic polynomial, and all the eigenvalues
of A.

Solution: The polynomial is

(2− λ)2 − 1 = 4− 4λ+ λ2 − 1

= λ2 − 4λ+ 3

= (λ− 3)(λ− 1)

So the eigenvalues are {3, 1}
Again, you may still be wondering “why do I care about eigenvalues?”. Some motivation:

Example 6.7. Consider the VAR

xt+1 =

[
a b
c d

]
xt + ϵt+1

where ϵt+1 ∼ N (0, I). We might be curious about the long-term behavior of this process, and a
priori it is not obvious how a, b, c, d should be restricted to guarantee, for example, stationarity.
The classification is simple with eigenvalues, though: if all the eigenvalues are inside the unit circle,
then the process is stationary.

Problem 6.9. What must be the restrictions on a, b, c, d so that the process is stationary? What
are the restrictions so that the process does not oscillate (in response to a one time impulse)?

Solution: We again find the characteristic polynomial

(a− λ)(d− λ)− bc = ad− (a+ d)λ+ λ2 − bc

= λ2 − (a+ d)λ+ (ad− bc)

The quadratic equation tells us the roots are

λ =
(a+ d)±

√
(a+ d)2 − 4(ad− bc)

2

Therefore the condition for stationarity is

∣∣∣(a+ d)±
√

(a+ d)2 − 4(ad− bc)

2

∣∣∣ < 1

To avoid oscillations, we only want real roots, so require

(a+ d)2 − 4(ad− bc) ≥ 0
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Example 6.8. The eigenstuff also gives us a way to think about the kernel and image of a linear
operator. For simplicity, consider an operator that has n linearly independent eigenvectors10. In
this case, we can decompose the operator into how it acts upon this eigenbasis: If x =

∑
i aixi, then

Ax =
∑

i aiAxi =
∑

i aiλixi. Note that this means the eigenvalues quickly tell us the dimension of
the kernel and image: The number of λi which are zero gives the dimension of the kernel, and the
remainder give the dimension of the image.

This last example also connects to how we defined the determinant above. If even one eigenvalue
is zero, then the operator cannot be bijective, since a whole subspace will map to zero, and one
eigenvalue being zero will clearly make the determinant zero. On the other hand, if no eigenvalue
is zero, then the determinant will not be zero.

6.4 Jordan

As might have become obvious from the above example, faced with a transformation A, we may
wish to change its representation in order to better understand its properties.

Definition 6.13. The inverse of a matrix A, denoted A−1, is the matrix satisfying AA−1 = I.

Example 6.9. The form of A−1 for a 2× 2 can easily be checked.

[
a b
c d

]
1

ad− bc

[
d −b
−c a

]
=

[
1 0
0 1

]
⇒ A−1 =

1

ad− bc

[
d −b
−c a

]
Definition 6.14. Given a matrix A, its Jordan Normal Form is V JV −1, where V has columns
which are the (potentially generalized) set of eigenvectors, and J is diagonal except for possibly
some 1s above the diag.

It is worth clarifying: there exist matrices which do not have a basis of eigenvectors, but there
always exists a Jordan normal form as described above.

Problem 6.10. Find the eigenvalues and eigenvectors of

B =

[
2 1
0 2

]
Solution: The only eigenvalue is 2. The only eigenvector is (1, 0)

Problem 6.11. Look up generalized eigenvectors. Find the unit-length generalized eigenvector of
B

Solution: Generalized eigenvectors satisfy (A − λI)mv = 0 for some m ≥ 1, but not lower m.
When m = 1, we have the eigenvector from above, and when m = 2, the generalized eigenvector
is (0, 1). Note that (A − 2I)m is the zero matrix for m ≥ 2, so there are not any higher-order
generalized eigenvectors.

10In some sense, “most” operators satisfy this.
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Problem 6.12. Find the Jordan decomposition of

A =

[
2 1
1 2

]
Solution: We above concluded the eigenvalues are 1 and 3. The corresponding eigenvectors are
(1,−1) and (1, 1). Therefore the Jordan decomp is

V JV −1 =

[
1 1
−1 1

] [
1 0
0 3

] [
1
2 −1

2
1
2

1
2

]
Jordan form is particularly nice if you want to take powers of a matrix, as An = V JnV −1.

Problem 6.13. Once again, consider

A =

[
2 1
1 2

]
What is A100? (Recall that you already know the eigenstuff from above.)

Solution: This is easy with Jordan form

A100 = V J100V−1

=

[
1 1
−1 1

] [
1 0
0 3100

] [
1
2 −1

2
1
2

1
2

]

I’m just gonna stop there, but you can finish the matrix multiplication to get it in a single matrix
form.

Problem 6.14. Recall exp(x) =
∑∞

k=0
xk

k! (if this is new, now you know!). We define the matrix
exponential exp(M) =

∑∞
k=0

1
k!M

k.11. Find exp(A), using the A from above.

Solution: This is easy with Jordan form

exp(A) =
∞∑
k=0

1

k!
Ak

= V (

∞∑
k=0

1

k!
Jk)V −1

=

[
1 1
−1 1

][∑∞
k=0

1k

k! 0

0
∑∞

k=0
3k

k!

] [
1
2 −1

2
1
2

1
2

]
=

[
1 1
−1 1

] [
e1 0
0 e3

] [
1
2 −1

2
1
2

1
2

]

The other nice use of Jordan form is that we can transform a system so that it becomes diagonal
(or at least really close, and upper triangular).

11If you are worried about existence, rest assured that the factorial keeps everything from exploding.
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Problem 6.15. Using the A we have been using all along, solve the following system of differential
equations.

ẋ = Ax

x(0) = (1, 2)

Solution: I gave little hint at how to do this, and so this was largely meant to be an exercise in
trying to adapt to a hard or unfamiliar problem. First, we use that the solution to the differential
equation is x(t) = exp(At)x(0). Then our solution from above implies

exp(At) =

[
1 1
−1 1

] [
et 0
0 e3t

] [
1
2 −1

2
1
2

1
2

]

So

x(t) =

[
1 1
−1 1

] [
et 0
0 e3t

] [
1
2 −1

2
1
2

1
2

] [
1
2

]
6.5 Symmetry and Definiteness

Definition 6.15. A matrix A is symmetric if aij = aji for all elements in the matrix, where i
is the row, and j is the column. If we instead require aij = āji, where the bar denotes complex
conjugation, then A is Hermitian (or self-adjoint).

In the case of real matrices, the definitions of symmetric and Hermitian coincide. We also have the
following useful property:

Theorem 6.1. It is always possible to find a set of orthonormal eigenvectors of a symmetric matrix,
which therefore constitute a basis for X.

Now we turn to the question of definiteness.

Definition 6.16. Expressions of the form x′Ax are quadratic forms. Note that, since we transpose
x on the left, the expression is a scalar.

Quadratic forms are often helpful for identifying properties about operators.

Definition 6.17. Given a symmetric matrix A,

(i) If x′Ax ≥ 0 for all x ̸= 0 ∈ X, then A is positive semi-definite. If the inequality is strict for
all i, then A is positive definite.

(ii) If x′Ax ≤ 0 for all x ̸= 0 ∈ X, then A is negative semi-definite. If the inequality is strict for
all i, then A is negative definite.

Whether a matrix is positive (negative) (semi)-definite will determine whether a critical point is a
maximum, minimum, or something else. We also use the concept of positive semi-definiteness to
formalize what we mean by “best” in the Gauss-Markov Theorem (OLS is BLUE).

Yet again, properties of eigenvalues of a transformation are essential to understanding the trans-
formation.
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Problem 6.16. Prove that a symmetric A is positive definite if and only if all of its eigenvalues
are positive. (Hint: the above theorem may be helpful).

Solution: Suppose all the eigenvalues are positive. Then from the above theorem let (v1, . . . , vn)
be an orthonormal eigenbasis with eigenvalues (λ1, . . . , λn). Let w be an arbitrary non-zero vector,
and a be the coefficients such that w =

∑n
i=1 aivi. Now

w′Aw = (
n∑

i=1

aivi)
′A(

n∑
i=1

aivi) (Use basis)

= (
n∑

i=1

aivi)
′(

n∑
i=1

aiλivi) (Use that eigenvector)

=
n∑

i=1

a2iλi (Orthonormal)

> 0 (At least one ai ̸= 0 since w ̸= 0)

So then A is positive definite.
Now suppose A is positive definite. Let v be an arbitrary eigenvector with eigenvalue λ. Then

0 < v′Av (Positive definite)

= v′λv (Eigenvector)

= λ∥v∥2

So it must be that λ > 0, and λ was an arbitrary eigenvalue.
The closest we can get to having a square root of a matrix is the Cholesky decomposition.

Definition 6.18. For a real positive definite matrix, A, its Cholesky decomposition is A = LLT ,
where L is lower triangular and positive along the diagonal.

Again, it is worth hammering on this point: for any positive definite matrix, there exists a unique
Cholesky decomposition. If the matrix is only positive semidefinite, then the decomp need not be
unique.

Problem 6.17. Show why, if A has a Cholesky decomposition, then A must be positive semidefi-
nite. (One line proof)

Solution:

x′Ax = x′L′Lx = ∥Lx∥2 ≥ 0

Example 6.10. If we consider a multivariate normal random variable defined by Y = AX +BW ,
where X is fixed, and W ∼ N (0, I). Then Y ∼ N (AX,BB′). This is also nice in reverse, since if
we are given Y ∼ N (M,Ω), but we know Ω = LLT , then we may consider Y = M + LW . The
fact that L is lower triangular can prove handy for conditioning, when working with jointly normal
random variables12.

12You’ll probably see this again in the winter quarter when messing with the Kalman filter. If you don’t get
satisfactory notes on this in the winter quarter, hit me up, because I think I have a note somewhere that is pretty
clean on this point.
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Definition 6.19. A linear operator T is

(i) Idempotent if T 2 = T

(ii) Nilpotent if there exists k such that T k = 0

(iii) Orthogonal if TT ∗ = I

(iv) Involutory if T 2 = I

Problem 6.18. What can we say about the eigenvalues in each case?

(i) T is idempotent

Solution:

λv = Tv = T 2v = λTv = λ2v

Thus, λ = λ2, so λ ∈ {0, 1}

(ii) T is nilpotent

Solution:

λkv = T kv = 0

Thus, λ = 0.

(iii) T is involutory

Solution:

λ2v = T 2v = v

Thus, λ = ±1.

Problem 6.19. LetX be an n×mmatrix such thatX ′X is nonsingular. Let F (v) =X(X ′X)−1X ′v.

(i) Prove that F is a symmetric operator.

Solution: Throw a ′ on there. I take as given that X ′′ = X and that the ordering of inversion
and transposition can be interchanged. I haven’t proven either of these things, but they are
true and not terribly difficult to prove.

(X(X ′X)−1X ′)′ = (X ′)′((X ′X)−1)′X ′

= X(X ′X)−1X ′

(ii) What can you say in terms of trying to construct an eigenbasis for the operator F .

Solution: Since F is symmetric, we can construct an orthogonal (and orthonormal, if we
want) eigenbasis.
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(iii) Prove that F is an idempotent operator.

Solution: Just smash the matrices together

(X(X ′X)−1X ′)(X(X ′X)−1X ′) = X(X ′X)−1X ′X(X ′X)−1X ′

= X(X ′X)−1X ′

(iv) What can you say about the way in which OLS projects vectors into explained and unexplained
components?

Solution: Any vector may be decomposed via the eigenbasis corresponding to F , and the
explained components have eigenvalue 1, hence they are not changed, and the unexplained
components will have eigenvalue 0, and be annihilated.
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7 Real Analysis

7.1 Setup

Definition 7.1. A metric space (X, d) is a set X and metric d : X ×X → R which satisfies

(i) d(x, y) ≥ 0 for all x, y ∈ X, with equality only if x = y.

(ii) d(x, y) = d(y, x) for all x, y ∈ X

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X

Definition 7.2.

(i) Br(x) = {y | d(x, y) < r} is the open ball of radius r around x13

(ii) A neighborhood of x is a set N such that there exists r > 0 such that Br(x) ⊆ N

(iii) An element x is a limit point of the set E if every neighborhood of x has nonempty intersection
with E \ {x}

(iv) A set E is closed if it contains all its limit points

(v) An element x is in the interior of E if there exists a neighborhood N of x such that N ⊆ E

(vi) A set E is open if all of its elements are interior

(vii) A set E is bounded if there exists M < ∞ such that d(x, y) < M for all x, y ∈ E

Note that open and closed are not opposites, nor are they exhaustive, nor are they exclusive.

Example 7.1. In (R, | · |), sets (a, b) are open, [a, b] are closed, and (a, b] are neither open nor
closed. The empty set is both open and closed (vacuously), so we can (no joke) call it clopen.

Problem 7.1. Show R is clopen.

Solution: Let x ∈ R. Then (x− 1, x+ 1) is a neighborhood of x which is contained in R, so R is
open. All limit points are also contained in R, since R is the universal space in consideration, so R
is closed.

Our favorite counterintuitive example will be the discrete metric space. For concreteness, when we
refer to the discrete metric, we mean the set N with the metric

d(x, y) =

{
0 x = y

1 x ̸= y

This should immediately be confusing, because somehow 5 has distance 1 from 100, 100 has distance
1 from 200, yet 5 has distance 1 from 200. This idea makes sense if you have three points in an
equilateral triangle, or tetrahedron, so try to picture that in infinitely many dimensions.

13Annoying technical point: we have not yet defined open, so after we do we would need to prove that the “open
ball” is actually open. It is. If this confusing, rename the open ball in this part of the definition as the “special” ball
or something, and you will see there is no circular logic.
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Problem 7.2. Prove the discrete metric is a metric.

Solution: Mechanical. Only that step that requires work is reall the triangle inequality, and event
then there are only a few cases to check.

Problem 7.3. The open sets of the discrete metric space are interesting...so are the closed sets.
What are they?

Solution: Take an arbitrary subset U of N. Now take an arbitrary x ∈ U . Consider the neighbor-
hood which is a ball with radius 1

2 . The only point in this ball is x, which is in U , so U is an open
set.
Let y ∈ N be arbitrary, and consider the ball of radius 1

2 around y. Its intersection with N \ y is
empty, so y is not a limit point, and there are no limit points. Then U vacuously contains all its
limit points, and U is closed.
Therefore every subset of N is clopen under the discrete metric.

The following problem gets at the more general reason why we care about these ideas (and maybe
maths generally) at all in economics: they can help us understand the nature of solutions (and lack
thereof).

Problem 7.4. Consider the “lowest number game”, wherein 2 agents choose a number in A ⊂ R,
and the agent that chooses the lower number wins the reward. In the case of a tie, the reward is
split. For each of the following A, determine whether it is open or closed (or both or neither) and
find the optimal strategy and equilibrium outcome.

(i) A = {1
2 , 1}

Solution:

Closed

Both play 1
2

Tie

(ii) A = { 1
n | n ∈ {1, 2, . . . , 100}}

Solution:

Closed

Both play 1
100

Tie

(iii) A = { 1
n | n ∈ {1, 2, . . .}}

Solution:

Neither

No optimal strategy exists

Indeterminate outcome since no optimal strategies

(iv) A = { 1
n | n ∈ {1, 2, . . .}} ∪ {0}

Solution:

Closed

Both play 0

Tie
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(v) A = [0, 1]

Solution:

Closed

Both play 0

Tie

(vi) A = [0, 1)

Solution:

Neither

Both play 0

Tie

(vii) A = (0, 1)

Solution:

Open

No

No optimal strategy exists

Indeterminate outcome since no optimal strategies

Definition 7.3. An open cover of a set E is a collection of open sets {Oα} such that E ⊆
⋃

αOα.
A subcover is a subset of the sets {Oα} which also covers E.

Definition 7.4. A set K is compact if, for every open cover of K, there exists a finite subcover.

My intuition is that compactness is saying that K can be contained in a nice way. In terms of
optimization, compactness is extraordinarily helpful for disciplining the domain. Note that there
always exists an open cover of any set, since we can just put a ball around every element. The trick
is whether or not we can remove all but a finite number of balls and still cover the whole set.

Problem 7.5. Show that (0, 1) is not compact by finding an open cover for which no finite subcover
exists. (Hint: Make it so that the edges are only covered in the limit of a countable sequence of
sets.)

Solution: Consider the cover {( 1n , 1) : n ∈ N}. This does cover the set because for any x ∈ (0, 1),
there exists an n such that 1

n < x. No finite subset of this cover works, however, becaues for any
finite selection, choose the smallest 1

n of the sets, and then note that 1
2n is not covered.

There is slightly more work to be done to prove the following theorem, but the result is what we
really care about.

Theorem 7.1 (Heine-Borel). In Rn, a subset A is compact iff it is closed and bounded.

Problem 7.6. For each A in the “lowest number game” above, decide whether A is compact (this
should be easy if your above answers are right).

Heine-Borel is great and basically tells us that we can think about compactness in terms of closed-
ness and boundedness, which are a bit more intuitive than the open cover definition. Is there a
reason why we restricted to Rn?
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Example 7.2. Consider the discrete metric space, and the open cover
⋃

x∈X B 1
2
(q). In this case,

every ball contains only x, so removing even one of them would mean we no longer cover X. So
there does not exist a finite subcover, and X is not compact. Nonetheless, X is bounded (let
M = 2, for example) and closed (if every neighborhood of y intersects X, then y must be in X).

7.2 Sequences and Notions of Convergence

Let’s start with two properties that sequences may possess.

Definition 7.5. A sequence (xn) converges to x if, for all ϵ > 0, there exists N such that n ≥ N
implies d(xn, x) < ϵ.

Definition 7.6. A sequence (xn) is Cauchy if, for all ϵ > 0, there exists N such that n,m ≥ N
implies d(xn, xm) < ϵ

What’s the difference? In the first case, xn is approaching some given x. In the second case, the
xn are getting closer together, which may mean they are approaching a given x, but it does not
necessarily.

Example 7.3. Note that any convergent sequence is a Cauchy sequence. Let ϵ > 0, and choose N
such that n ≥ N implies d(xn, x

∗) < ϵ/2. Then for n,m ≥ N , d(xn, xm) ≤ d(xn, x
∗)+d(xm, x∗) < ϵ.

Problem 7.7. It is quite tempting to think that Cauchy sequences must also always converge (the
converse of above). Let C be the space of function [0, 1] → R which are continuous. Consider the
sequence

fn(x) =

{
0 x ≤ 1− 1

n

n(x− 1 + 1
n) x ≥ 1− 1

n

(i) Let the metric be d(f, g) =
∫ 1
0 |f(x) − g(x)|dx. What does fn converge towards, and is it in

C? Is fn a Cauchy sequence?

Solution: It converges towards the function f which is zero everywhere except f(1) = 1. To
see this, note that

d(fn, f) =

∫ 1

0
|fn(x)− f(x)|dx

=
1

2n

But f ̸∈ C, since f is not continuous. However, fn is a Cauchy sequence (let n < m here)

d(fn, fm) =

∫ 1

0
|fn(x)− fm(x)|dx

=
1

2
(
1

n
− 1

m
)
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(ii) Let the metric be d(f, g) = supx |f(x) − g(x)|. What does fn converge towards, and is it in
C? Is fn a Cauchy sequence?

Solution: It doesn’t converge towards anything. The only possible candidate function under
this metric would have f(1) = 1, and would need f(x) = 0 elsewhere since for all x ∈ [0, 1)
there exists an N where fn(x) = 0 for n > N . But even with this function, we still have
d(fn, f) = 1 for all n. This candidate function is not in C, but that’s really beside the point.

The sequence is also not Cauchy, since d(fn, fm) = m( 1
m − 1

n) can be made arbitrarily close
to 1 with large enough choices for n.

We can classify metric spaces using Cauchy sequences in the following way.

Definition 7.7. A metric space X is (Cauchy) complete if every Cauchy sequence converges.

As seen in the above examples, it is generally possible to find a Cauchy sequence which does not
converge. However, in the space that we most frequently care about, this problem does not exist.

Theorem 7.2. Every Cauchy sequence in Rn converges.

Some other notions of convergence are helpful to know.

Definition 7.8. Let (fn) be a sequence of functions fn : X ⊆ R → R

(i) Say fn → f pointwise if, for all x ∈ X, and for all ϵ > 0, there exists N(x) such that n > N
implies |fn(x)− f(x)| < ϵ

(ii) Say fn → f uniformly if, for all ϵ > 0, there existsN such that n > N implies |fn(x)−f(x)| < ϵ
for all x ∈ X

The difference is key: in the first case the convergence occurs point-by-point, and the rate of
convergence may vary by x, whereas in the second case everything has to converge together, so
the N cannot depend on x. We are naturally interested in understanding when these notions of
convergence differ.

Problem 7.8. Let

gn(x) =

{
0 x ∈ [0, 1− 1

n ]

nx− (n− 1) x ∈ (1− 1
n , 1]

xn =
n− 1

n
(1− 1

n
)

yn = 1− 1

n2

(i) What is limn→∞ xn?

Solution: It’s 1.

(ii) What is limn→∞ yn?

Solution: Also 1.

(iii) What is g(x) ≡ limn→∞ gn(x) (for arbitrary x ∈ [0, 1]?

Solution: It’s 1{x = 1}.
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(iv) What is limn→∞ gn(xn)?

Solution: Note xn is always below the cutoff, so gn(xn) = 0 always, hence its limit is zero.

(v) What is limn→∞ gn(yn)?

Solution:

lim
n→∞

gn(yn) = lim
n→∞

gn(
n2 − 1

n2
)

= lim
n→∞

n
n2 − 1

n2
− (n− 1)

= lim
n→∞

n− 1

n
− n+ 1

= lim
n→∞

1− 1

n
= 1

(vi) Either find the uniform limit of gn or show it does not exist.

Solution: It does not exist. Let ϵ > 0 (it won’t matter what, exactly), and consider an
arbitrary N . Let n > N . Then for x = 1 − 1

n2 , we have gN (x) = 1 − 1
n , but g(x) = 0. So

there does not exist an N such that n > N implies |fn(x)− f(x)| < ϵ for all x.

(vii) What can you conclude about the conjecture “xn → x and gn → g (pointwise) implies
gn(xn) → g(x)”?

Solution: It’s wrong. Pointwise convergence is not enough. The point of including xn and
yn was to show alternate ways of trying limn→∞ gn(xn) do not agree, and in fact in this case
one is “right” in that it agrees with the pointwise limit of gn, and one is wrong.

Let’s consider one more prescient example of how different notions of convergence may not agree.
These notes have no measure theory nor rigorous probability, but I’d be remiss to mention notions
of convergence and not mention the following concepts, which are key to econometrics.

Definition 7.9. A sequence of random variables Xn converges to random variable X...

(i) almost surely (Xn →a.s. X) if P [limn→∞Xn = X] = 1

(ii) in probability (Xn →p X) if for all ϵ > 0, limn→∞ P [|Xn −X| > ϵ] = 0

(iii) in distribution (Xn →d X) if limn→∞ Fn(x) = F (x) for all x where F is continuous

Example 7.4. Let’s check that these are not the same.

(i) Consider the sequence of sets such that for n = 1, we have [0, 1], for n = 2, 3, we have [0, 12 ]
and [0, 12 ], for n = 4, 5, 6, we have [0, 13 ], [

1
3 ,

2
3 ], [

2
3 , 1], and so on. Let Ω = [0, 1], P be uniform

over Ω, Xn(ω) = 1 for ω in the n-th set, Xn(ω) = 0 otherwise, and X(ω) = 0. Then

lim
n→∞

P [|Xn −X| > ϵ] ≤ lim
n→∞

P (Cn)

= 0

32



Abram

where Cn is the interval for n, and thus the measure of Cn is going to 0.

So Xn →p X. However, for every ω and every N , there exists n > N such that Xn(ω) = 1 and
Xn+1(ω) = 0, so limn→∞Xn(ω) is not even defined for any ω, and P [limn→∞Xn(ω) = X] = 0.
So Xn ̸→a.s. X.

(ii) Let Ω = [0, 1], P be uniform over Ω, Xn(ω) = ω if n is odd, Xn(ω) = 1 − ω if n is even,
X(w) = ω. Then

Fn(x) = P [Xn ≤ x]

=

∫ x

0
dP (ω)

= x

and similarly F (x) = x. So Fn = F and Xn →d X. However, P [|Xn−X| > ϵ] = 0 if n is odd,
and P [|Xn −X| > ϵ] = 1− ϵ > 014 if n is even, so Xn ̸→p X.

7.3 Banach and Hilbert Spaces

We are now able to define a central structure for functional analysis.

Definition 7.10. A Banach space is a vector space equipped with a norm, such that it is a complete
metric space with the metric induced by the norm.

Theorem 7.3. The space C[0, 1] (the set of functions [0, 1] → R which are continuous) is a Banach
space (under the metric induced by the sup norm).

Proof. I include this proof because I think it is instructive for mathematical thinking and tackling
a proof. In this vein, the following is not a good example of how to write a “neat” proof, because
I wander around and return to earlier expressions to explain that I am guessing at strategies. A
better approach is to do all of this on your own, then write down the clean final result. I write all
the thinkings and musings to be more pedagogical.

I will use ∥ · ∥ interchangeably with supx | · |.

First, we want to prove the space is a Banach space, which means we want to show that every
Cauchy sequence converges. Then the proof approach is to consider an arbitrary Cauchy sequence
in C[0, 1] and show that it converges to some element of the space. Let {fn} be an arbitrary Cauchy
sequence.

How do we consider what the limit might be? In this case, it seems intuitive that the limit should
match the pointwise limit, i.e. fn → f , where f is defined by limn→∞ fn(x) for each x. Is this limit
well-defined for each x? If it were a Cauchy sequence, it would be since, R is complete. To verify
this, note that for any ϵ > 0, there exists an N such that n,m > N implies supx |fn(x)−fm(x)| < ϵ
by definition of fn being a Cauchy sequence under the sup norm, and therefore for any given x
we have |fn(x) − fm(x)| ≤ supx |fn(x) − fm(x)|, so fn(x) is a Cauchy sequence for any x, and
f(x) = limn→∞ fn(x) is well-defined for each x.

14For ϵ sufficiently small, i.e. 0 < ϵ < 1.
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We have our candidate limit f , but it remains to verify that fn → f under the sup norm (we above
only verified pointwise convergence), and that f ∈ C[0, 1]. To verify the limit statement, let ϵ > 0,
and N such that n,m > N implies ∥fn−fm∥ < ϵ

2 , which can be done since f is a Cauchy sequence.
Now let n > N , and use the triangle inequality that holds for norms

∥fn − f∥ = ∥fn − fN+1 + fN+1 − f∥
≤ ∥fn − fN+1∥+ ∥fN+1 − f∥

By definition of Cauchy and our N choice, ∥fn − fN+1∥ < ϵ
2 . Additionally, since ∥fN+1 − fm∥ < ϵ

2
for all m > N ,

∥f − fN+1∥ = ∥ lim
m→∞

fm − fN+1∥

= lim
m→∞

∥fm − fN+1∥

<
ϵ

2

The first line is just the way we defined f , the second line uses that the norm is a continuous
function, and the third line uses that the sequence is bounded by ϵ

2 . There is potentially the issue
of limm→∞ ∥fm − fN+1∥ existing at all (consider the sequence which bobs between ± ϵ

4), but since
the first term on the left is well-defined the interchanging of limit with ∥ · ∥ since the norm is
continuous guarantees us it is well-defined. Then we return to our above unfinished calculation

∥fn − f∥ = ∥fn − fN+1 + fN+1 − f∥
≤ ∥fn − fN+1∥+ ∥fN+1 − f∥

<
ϵ

2
+

ϵ

2
= ϵ

Great, so fn → f in the sense of the sup norm. Last bit: is f ∈ C[0, 1]? We might guess that
somehow we need to use that each fn is continuous at each x (where else would the continuity come
from?), and probably again that the sequence is Cauchy under the sup norm. The strategy is then
to break |f(x)− f(y)| into terms which use the fact that f is close to fn, and that for any given fn,
if |x− y| is sufficiently small, then |fn(x)− fn(y)| < ϵ. First, let ϵ > 0, and note that the triangle
inequality gives

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|

We need a δ to bound |x − y|, so our idea is to first pick an N big enough that for n > N both
|fn(x) − f(x)| < ϵ

3 and |fn(y) − f(y)| < ϵ
3 , which is possible since fn → f , so we just pick N so

that this holds for any x, y. Once we have this, we can just pick δ such that |x − y| < δ implies
|fn(x)− fn(y)| < ϵ

3 , and

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|

<
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ
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So f is continuous, and we are done. Note that in the last step the δ choice depended on the n
choice, which depended on the N choice, which depended on the Cauchy assumption, so we did
use the limit sequence definition of f to show its continuity.

The brother of Banach is also quite helpful.

Definition 7.11. A Hilbert space is a vector space equipped with an inner product, such that it
is a Banach space with the norm induced by the inner product.

You will likely see little to no discussion of Banach and Hilbert spaces in your first year, but it is
helpful to at least see them once and get a flavor for what they are.

Example 7.5. The space of real-valued Borel measurable random variables, with finite variance,
is a Hilbert space. Its inner product is ⟨x, y⟩ =

∫
Ω x(ω)y(ω)dµ(ω) = E[xy]. Why care? You can dig

up a vector space or functional analysis textbook and find lots of nice theorems regarding Hilbert
spaces (including theorems regarding projections!). Therefore working in Hilbert space potentially
gives us nice properties, and in fact you’ll see this exact Hilbert space in Azeem’s course (though I
don’t think he points out that it is a Hilbert space).

Problem 7.9. What exactly do we gain from the additional structure of a Hilbert space, compared
to a Banach space? Can you think of problems or ideas that cannot be addressed in a Banach space,
but can be in a Hilbert space?

Solution: The inner product is the new addition, which intuitively gives a way of thinking about
angles. In particular, orthogonality is an important idea in regression and projection more generally,
and a Hilbert space allows us the machinery to rigorously define what we mean by vectors being
orthogonal, or colinear, or correlated in some way. As you might expect, these ideas are useful in
econometrics for just about any relationship we might be interested in. As a bonus, the “angles”
perspective gives a geometric interpretation to regression techniques.

Example 7.6. The core ideas of generalized method of moments (GMM) rest on the idea of
random variables living in a Hilbert space, and us wanting to find parameter values such that our
assumptions about orthogonality are met.
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8 Continuity

I present you with a definition of continuity which looks unhelpful, at first.

8.1 Basics

Definition 8.1. A function f : X → Y is continuous if f−1(V )15 is open for every open V ⊆ Y .

I give this definition because it is more general than the standard ϵ − δ definition, in that it can
work outside of metric spaces. However, in metric spaces they are equivalent:

Theorem 8.1. A function f : X → Y is continuous iff16 for every ϵ > 0, there exists a δ > 0 such
that if d(x, x′) < δ, then d(f(x), f(x′)) < ϵ.

Example 8.1. Cobb-Douglas production, F (K,L) = KαL1−α is continuous. CRRA utility, u(c) =
c1−γ−1
1−γ , is as well. Not really sure why I felt the need to give these, since most everything that we

use as standard is continuous.

Example 8.2. Let X be a metric space with finitely many elements. Then every subset of X is
open, since we may take a small enough neighborhood so that x is the only point in the neighbor-
hood. So the pre-image of any open set for any function will be open. So any function on X will
be continuous.

If you have not messed around with stuff much, or have not spent much time around pedantic
mathematicians, the old “you can draw without lifting your pencil” seems a good enough intuition
that you may think you’ll never need the formal definitions. Here are some trickier ones:

Problem 8.1. Determine where each of the following functions is continuous (e.g. is the function
continuous everywhere, nowhere, or at some subset, and what is that subset?).

(i) f(x) = sin( 1x), f(0) = 0.

Solution: Away from x = 0, we are composing continuous functions, so f is continuous, and
we need only check 0. Intuitively, we can see that since sin oscillates between −1 and 1, and as
x → 0 this oscillation will happen faster, f must not be continuous. To rigorously show this,
we need to show that there exists an ϵ > 0 such that for all δ > 0, there exists a y ∈ Bδ(x)
such that |y − x| < δ but |f(y) − f(x)| > ϵ. For simplicity, let ϵ = 1

2 , and δ be arbitrary.
Choose y = 1

2πk+π
2
, where k is some integer large enough such that y < δ. Then |y − 0| < δ,

but |f(y) − f(x)| = |1 − 0| = 1 > ϵ, so f is not continuous at 0. Importantly, note that the
above argument worked for every δ > 0, so that no δ exists which would work for the ϵ − δ
definition of continuity.

(ii) f(x) = x sin( 1x), f(0) = 0

Solution: Again, away from x = 0, we are composing continuous functions, so f is continuous,
and we need only check 0. But now note that the additional x term will cause the oscillations
to become smaller with x. Is this enough to lead to continuity? Intuitively, it is because sin
is only causing movement between −1 and 1, and x is compressing this movement to zero, so
continuity should hold for the same reason g(x) = x is continuous. Rigorously, let ϵ > 0, and
simply set δ = ϵ. Then if y ∈ Bδ(0),

15f−1(V ) = {x ∈ X | f(x) ∈ V }
16This double f means “if and only if”.
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|f(y)− f(0)| = |f(y)|

= |y sin(1
y
)|

≤ |y|| sin(1
y
)| (Cauchy-Schwarz)

≤ |y| (| sin | ≤ 1)

< δ (y ∈ Bδ(0))

= ϵ

So we have continuity. A common theme that might be apparent even now is that real analysis
makes heavy use of Cauchy-Schwarz and the triangle inequality.

(iii) f(x) = x2 sin( 1x), f(0) = 0

Solution: This proof is super close to the above one, we just have one extra step to account
for the squaring. To make this easy, insteady set δ = min{ϵ, 1}. Then proceed as before with
minor revision:

|f(y)− f(0)| = |f(y)|

= |y2 sin(1
y
)|

≤ |y2|| sin(1
y
)| (Cauchy-Schwarz)

≤ |y2| (| sin | ≤ 1)

≤ |y| (y ≤ 1)

< δ (y ∈ Bδ(0))

≤ ϵ

Note the last line is now a ≤ because if ϵ > 1, then we chose δ < ϵ to simplify the squaring
part of the function in the proof.

(iv) f(x) = 1Q(x)

Solution: This function is wildin’, and a little playing with it should convince you there
is no way it is continuous. The proof is simple: let q be a real number, and δ > 0. Then
Bδ(q) contains both rationals and irrationals, so regardless of whether q ∈ Q or not, there is
a y ∈ Bδ(q) such that |f(y)− f(q)| = 1.

(v) Stars over Babylon function: If x ∈ Q, then express x = p
q in lowest possible terms (no integer

divides both p and q) and f(x) = 1
q . Otherwise f(x) = 0.

Solution: We will approach the rationals and irrationals separately. First, let x = p
q ∈ Q,

and note that Bδ(x) contains an irrational y for any δ > 0, and thus |f(y)− f(x)| = 1
q , so f is

not continuous at x. Now instead let x ∈ R\Q. It is tempting to use the same argument as in
the previous problem and for the rationals of this problem, but the issue is that, as we reduce
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the radius δ, the f(y) = 1
q may also decrease. In fact, let ϵ > 0, choose q such that 1

q < ϵ.

Now note that within any unit ball (B1(x)) there are finitely many y such that f(y) = 1
q′ ,

for any q′, since this limits to y ∈ { p
q′ ,

p+1
q′ , . . . , p+q′

q′ } for some p. Therefore there are finitely

many y with f(y) ≥ 1
q . Choose δ to be the minimum distance between x and this set of y,

then we have |f(y)− f(x)| < ϵ for all y ∈ Bδ(x). So f is continuous at the irrationals.

Sometimes we want a stronger notion of continuity. A few exist (with varying strengths), but I
think this one is worth knowing.

Definition 8.2. A function f : X → Y is Lipschitz continuous if there exists a constant K such
that d(f(x), f(y)) ≤ K · d(x, y)

Problem 8.2. Prove that if a function is Lipschitz continuous, then it is continuous.

Solution: Let the Lipschitz constant be K. Then for ϵ > 0 let δ = ϵ
K , and we have

|f(x)− f(y)| ≤ K|x− y| (Lipschitz def.)

< K · ϵ

K
(y ∈ Bδ(x))

= ϵ

8.2 Intermediate Value Theorem

Theorem 8.2 (Intermediate Value). Let x ≤ y, and f : R → R continuous. If f(x) = a, f(y) = b,
then [a, b] ⊆ f([x, y]) (assuming without loss of generality a ≤ b, otherwise we have [b, a]). If f is
strictly monotonic17, there exists an inverse mapping f−1 : [a, b] → [x, y].

I have slightly generalized the standard statement, mainly so that people already familiar with the
theorem have to read it more closely. But the basic idea is intuitive: if I go from value a to value
b as I move from x to y, and I know f is continuous, it has to hit all the values between a and b
along the way.

Example 8.3. Most often, we use the intermediate value theorem to show existence of an equilib-
rium. For example, we might have the goods market clearing condition

∑
i

ci(r) =
∑
i

yi(r)

where consumption c and output y both depend on the interest rate r. We can reframe this as

F (r) =
∑
i

ci(r)−
∑
i

yi(r)

If we can show that F is continuous (often the case), and that there exist r and r such that
F ((r) < 0 < F (r), then we may conclude there exists r∗ ∈ [r, r] such that the market clears. If
we are also able to conclude F is strictly monotonic (also sometimes the case), then we may also
conclude the equilibrium is unique.

17Here meaning x > y implies f(x) > f(y) (no equality allowed)

38



Abram

Problem 8.3 (Baby Brouwer). Consider the set of functions F = {f : [0, 1] → [0, 1] | f is continuous}.

(i) What are the possible values that may be taken by f(x)−x at x = 0 (what is {y | f(0)− 0 =
y, f ∈ F})?
Solution: We know f maps to [0, 1], so the possible values are [0, 1].

(ii) What are the possible values of f(x)− x at x = 1 (what is {y | f(1)− 1 = y, f ∈ F})?
Solution: Again, we know f maps to [0, 1], but now we subtract 1, so the possible values are
[−1, 0].

(iii) What can you conclude about the values that must be take by f(x)−x in [0, 1] for any f ∈ F?

Solution: The idea is to bound the a and b in the statement of the IVT. We see that for any
x ∈ [0, 1] and y ∈ [−1, 0], it must be that [0] ⊆ [y, x], so f(x) − x must take the value 0 for
some x ∈ [0, 1].

(iv) What can you conclude about the existence and uniqueness of fixed points for operators in
F?

Solution: A fixed point is such that f(x) = x, and we just concluded that for any f ∈ F ,
there is an x such that f(x) = x, so there exists a fixed point for every operator in F . It is
not unique, as the counterexample x 7→ x shows, where every x ∈ [0, 1] is a fixed point.

8.3 Extreme Value Theorem

One of the most important theorems we have connects continuity and compactness to optimization
(which we will get to later).

Theorem 8.3 (Extreme Value Theorem). If f : K → Y is continuous, where K is compact, then
f has a maximum and minimum.

This might seem obvious or unhelpful, because extrema are always achieved, right? No. Therefore
having a condition for existence is quite helpful.

Problem 8.4. Find an example of f : K → Y which breaks the Extreme Value Theorem by
satisfying the assumptions except:

(i) f is not continuous

Solution: One example: let K = [0, 1], f(x) = 1
x for x ∈ (0, 1], and f(0) = 0.

(ii) K is not compact

Solution: One example: K = [0, 1), f(x) = x.

Example 8.4. A simple application is that if an agent has a compact set of choices (defined by
a budget constraint), and we consider the implied utility of each choice as a continuous function,
then there exists a solution to the agent’s problem. Usually we have a simple budget set, like
a n-dimensional simplex, but note that the Extreme Value Theorem says we can accommodate
weirder stuff, like prices endogenously changing, provided the budget set remains compact.

8.4 Hemicontinuity

I am intentionally omitting this section. It is worth covering if you want to be a micro-theorist,
but it came up maybe only once during the first year, and spending time on it in math camp does
not seem prudent to me.
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9 Differentiation

9.1 General

Functions are generally not linear, which is quite unfortunate since linear objects are comparatively
easy to deal with. Additionally, we often care about how a function changes as we vary its argu-
ments. If the function is nice enough that we can make this “change behavior” precise, we may
consider the linear18 approximation of the function. This is all the derivative is: a locally linear
approximation to a function. Below we will see Taylor’s theorem, which I believe is often taught
in an unmotivating context, so I will try to motivate a little differently.

Much of economics (and the physical sciences, for that matter) requires nice (linear) approxima-
tions to nonlinear functions in order to solve problems. It is worth keeping in mind that this is
really all the derivative is.

I’ll start with a really general looking definition that you almost certainly did not see in calc I, and
maybe have not seen at all (I don’t think I saw it in undergrad), but first, we need to clarify what
we mean by “bounded”, for a transformation.

Definition 9.1. A transformation f : X → Y is bounded if, for all bounded subsets X ′ ⊆ X, we
have that f(X ′) ⊆ Y is bounded.

Now, to the good stuff:

Definition 9.2. Let x ∈ X, f : X → Y . If there exists a bounded linear transformation Ax : X →
Y such that

lim
∥h∥X→0

∥f(x+ h)− f(x)−Ax(h)∥Y
∥h∥X

= 0

Then Ax is the Fréchet derivative of f at x, and we say f is Fréchet differentiable at x. If such an
Ax exists for each x ∈ U ⊆ X (possibly different across x), then we may define Df(x) as the Ax

for each given x ∈ U , and say f is Fréchet differentiable over U .19

This is the generalization of the standard derivative you see in basic calculus. If you apply the
definition to a simple space (like Rn) you will see your old friends from calc I, II, and III pop out.
Additionally, consider

Definition 9.3. Let x ∈ X, f : X → Y . If there exists a transformation Ax : X
∣∣∣
∥x∥=1∥

→ Y such

that

lim
t→0

∥f(x+ th)− f(x)− tAx(h)∥Y
∥th∥X

= 0

for all h ∈ X
∣∣∣
∥x∥=1

, then Ax(h) is the Gateaux derivative of f at x. It depends on the direction, h,

chosen.

18More generally affine
19Note that, while we require Ax to be linear, we do not have any requirements for how Ax may vary with x.

Hence, as a function of x, Df(x) may be nonlinear.
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This is the generalization of the directional derivative you likely saw in multivariable calc.

Note the difference: the Fréchet derivative requires that the limit exists for any means of the norm
of h approaching 0, whereas the Gateaux derivative only requires linear approaches (draw picture
here). So if a function is Fréchet differentiable, it has a Gateaux derivative.

If we are working in a single dimension, f : R → R, then Fréchet and Gateaux are the same, and
we can see

lim
∥h∥→0

∥f(x+ h)− f(x)−A(h)∥
∥h∥

= 0

lim
h→0

|f(x+ h)− f(x)−Ah|
|h|

= 0 (A linear, norm is scalar)

lim
h→0

f(x+ h)− f(x)

h
= A

This last expression might look like the typical derivative definition you have seen. The reason we
did not start with it is that we generally cannot divide by vectors, so require the general def, but
we can divide when we have a scalar.

Example 9.1. We can easily find the derivative of f(x) = x2 for x ∈ R:

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)2 − x2

h

= lim
h→0

x2 + 2xh+ h2 − x2

h

= lim
h→0

2xh+ h2

h

= lim
h→0

2x+ h

= 2x

Problem 9.1. Find the derivative of f(x) = xn.

Solution: The argument is roughly the same as above, just with extra combinatoric steps.

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)n − xn

h

= lim
h→0

∑n
k=0

(
n
k

)
xn−khk − xn

h

= lim
h→0

∑n
k=1

(
n
k

)
xn−khk

h

= lim
h→0

n∑
k=1

(
n

k

)
xn−khk−1

= nxn−1

Problem 9.2. Consider f(x, y) = x3

x2+y2
, except f(0, 0) = 0.
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(i) Find the Gateaux derivative of f .

Solution: The only problem we are going to have is at (0, 0). Away from (0, 0), we can just
do vanilla quotient rule:

Df(x, y) =

(
3x2 · (x2 + y2)− x3 · 2x

(x2 + y2)2
,
0− x3 · 2y
(x2 + y2)2

)
=

(
x4 + 3x2y2

(x2 + y2)2
,

2x3y

(x2 + y2)2

)
Now consider (0, 0) and the direction (h1, h2). Then

|f(x+ th)− f(x)− tA(h)|
∥th∥

=
|f(th)− tA(h)

∥th∥
(At (0, 0))

=
| (th1)3

(th1)2+(th2)2
− tA(h)|

|t|∥h∥

=
| h3

1

h2
1+h2

2
−A(h)|

∥h∥
(Cancel t)

Therefore the Gateaux derivative at (0, 0) in direction (h1, h2) is A(h) =
h3
1

h2
1+h2

2
. This alone

should make it clear that something is funky, and that the Fréchet derivative will not exist,
since A is nonlinear.

(ii) Either find the Fréchet derivative, or show it does not exist.

Solution: We can immediately see that no such linear operator exists because we above
found that the potential A depends on the direction nonlinearly. However, we can directly
show this, also. Suppose A(h) = axh1 + ayh2, so that A is a general linear transformation of
the form we would want. Approach the original along h1 = h2, so

|f(x+ h)− f(x)−A(h)

∥h∥
=

|f(h)−A(h)|
∥h∥

=
| h3

1

h2
1+h2

2
− axh1 − ayh2|

∥h∥

=
|12h1 − (ax + ay)h1|

∥h∥
(h1 = h2)

So ax + ay = 1
2 . But if we approach along h1 = −h2,
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|f(x+ h)− f(x)−A(h)

∥h∥
=

|f(h)−A(h)|
∥h∥

=
| h3

1

h2
1+h2

2
− axh1 − ayh2|

∥h∥

=
|12h1 − (ax − ay)h1|

∥h∥
(h1 = −h2)

So we would also need ax − ay = 1
2 , and therefore ax = 1

2 , ay = 0. But now approach along
h2 = 0, and

|f(x+ h)− f(x)−A(h)

∥h∥
=

|f(h)−A(h)|
∥h∥

=
| h3

1

h2
1+h2

2
− axh1 − ayh2|

∥h∥

=
|h1 − axh1|

∥h∥
(h2 = 0)

So we also need ax = 1. This cannot happen, so there is no Fréchet derivative at (0, 0).

Definition 9.4. Some derivatives have special names.

(i) For f : Rn → R, Df is called the gradient, and D2f ≡ Hf is called the Hessian

(ii) For f : Rn → Rm, Df is called the Jacobian (matrix)20

These have special names because they are the most common, and easily represented. Note that
for f : Rn → Rn, D2f is a tensor-like object. Since, in this case, Df is a square matrix, D2f can
be visualized as a cube of matrix entries. And before you think I’ve wondered away from anything
you’ll ever use, I can tell you we had to deal with this type of cube object in an IO field course.

(Draw matrices with dimensions to illustrate that Df is linear operator. Good mnemonic for
remembering the dimensions of Df is that it must operate on the same space f operates on.)

Theorem 9.1 ((i)). 1. A function is concave if Hf is negative semidefinite. A function is
strictly concave if Hf is negative definite.

2. A function is convex if Hf is positive semidefinite. A function is strictly convex if Hf is
positive definite.

Theorem 9.2. Let C∞(R) be the space of functions f : R → R which are infinitely differentiable.
Then the operator D : C∞(R) → C∞(R) which maps functions to their derivatives is a linear
operator.

20I once lost a crap ton of points in a maths class for referring to this matrix as the Jacobian, because apparently
mathematicians reserve “Jacobian” (without the word matrix after) to mean the determinant of the Jacobian matrix.
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A tricky little point: be sure to keep track of your operators and the underlying space, or you will
venture into sloppyland. For a given function, the Fréchet derivative is R → R. The operator D
which takes a function and returns its Fréchet derivative is C∞(R) → C∞(R).

Problem 9.3. The Fréchet derivative is a bounded linear operator by definition, and we above
said that D is linear. Is it bounded (we endow C∞(R) with the sup norm)?

Solution: Not necessarily. The derivative itself is a bounded linear operator, but D maps functions
to their derivatives, and D itself is free to be unbounded in how it maps to the linear functions.
For example, consider the sequence fn(x) = sin(nx), so Dfn(x) = n cos(nx). Then the bounded
subset {f : ∥f∥ ≤ 1} contains all the fn, but ∥Dfn∥ = n, which is unbounded as n → ∞, so D is
not a bounded operator.

Problem 9.4. What are the eigenvectors and eigenvalues of D? (Hint: Don’t overthink. What
was the simpest derivative to remember in calc I?)

Solution: We want something along the lines of Df = λf . One strategy is to note that is just
the differential equation ẏ = λy, which we remember as having exponential solutions from the first
day of a differential equations course. So the eigenvectors of D are the exponential funtions, and
all reals are the eigenvalues. I find this result kinda beautiful, because it provides some insight into
why exponential functions seem important and show up everywhere: they are the special functions
which are simply scaled by differentiation. (This is another reason why eigenstuff seems like a
useful tool for gaining mathematical insight.)

9.2 L’Hospital

This theorem may feel one-off, but it is surprisingly handy when dealing with lots of limits.

Theorem 9.3 (L’Hospital). Let f and g be differentiable and g′(x) ̸= 0 in (a, b). Suppose f ′(x)
g′(x) → A

as x → a. If f(x) → 0 and g(x) → 0 or if g(x) → ∞ (as x → a), then f(x)
g(x) → A.

The basic idea is that sometimes we have a fraction which approaches an indeterminate form, but
if we know that the ratio of the rates of change of the numerator and denominator approach a finite
limit, then we can say the same for the original fraction.

Problem 9.5. Find limx→−1
x2−1
x+1 .

Solution: Conditions for L’Hospital are met, so we differentiate: limx→−1
2x
1 = −2

Problem 9.6. Find the following limits

(i) limγ→1
c1−γ−1
1−γ

Solution: Conditions for L’Hospital are met, so we attack, using that D(ax) = log(a)ax, to

find limγ→1
− log(c)c1−γ

−1 = log(c)

(ii) limx→0 x lnx

Solution: If we reformulate as lnx
1
x

, the conditions are met, so we differentiate and find

limx→0

1
x

− 1
x2

= limx→0−x = 0.
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9.3 Chain Rule

The following theorem is crazy useful, and I guarantee you will use it a ton in your first year. It
details how the derivative of a composition of functions relates to the derivatives of each individual
function.

Theorem 9.4 (Chain Rule). Suppose T : X → Y and S : Y → Z are differentiable, and define
P : X → Z as P (x) = S(T (x)) (composition). Then P is differentiable, and DP (x) = DS(T (x)) ◦
DT (x).

Once again, this statement is overkill. The simpler version is that if h(x) = g(f(x)), then h′(x) =
g′(f(x)) · f ′(x), so the derivatives form a “chain” of composition.

Problem 9.7. Consider the function h(x) =
√

x+
√
x. In terms of the chain rule, what are f and

g, and what is h′?

Solution:
Try f(x) = x+

√
x, g(x) =

√
x, so h′(x) = g′(f(x))f ′(x) = 1

2(x+
√
x)−

1
2 (1+ 1

2x
− 1

2 ). Other solutions
exist.

Problem 9.8. Use the chain rule to find the derivative of the following functions

(i) f(x) = (
∑n

j=1 x
αj )

1∑n
j=1

αj

Solution: Directly

f ′(x) =
1∑n

j=1 αj
(

n∑
j=1

xαj )
1∑n

j=1
αj

−1
n∑

j=1

αjx
αj−1

(ii) f(x) = (
∑n

j=1 x
αj

j )
1∑n

j=1
αj (note that x is now n-dimensional)

Solution: The j-th element of the gradient is

[∇f ]j =
1∑n

j=1 αj
(

n∑
j=1

x
αj

j )
1∑n

j=1
αj

−1
αjx

αj−1
j

(iii) Look up Adrien Bilal’s FAME framework. His approach of using the master equation to
represent the equilibrium with one object leans heavily on recognizing how to apply the chain
rule in more difficult spaces.

9.4 Taylor’s Theorem

The following theorem may be stated more generally than I have it here, but will require more
cumbersome notation since there will be multi-indices, etc. The basic idea of Taylor’s approximation
is that we may use the derivatives of a function to approximate that function. It is a generalization
of the mean value theorem to higher orders of approximation
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Theorem 9.5 (Taylor). Suppose f is a smooth real function on [a, b], and let α < β ∈ [a, b]. Then
there exists γ ∈ [α, β] such that

f(β) =

n−1∑
k=0

f (k)(α)

k!
(β − α)k +

f (n)(γ)

n!
(β − α)n

The intuition here is that each term “corrects” some of the error of the previous term. I put
“corrects”, because if we truncate the final correcting term (the one with γ), there is no guarantee
that increasing the number of terms increases the degree of approximation21.

Example 9.2. The mean value theorem is just Taylor’s theorem where n = 1: We can find a
point b between two points (a, c) such that the slope at b matches the average slope from a to c:

f ′(b) = f(c)−f(a)
c−a .

Problem 9.9. Find an example where f is continuous, but not differentiable, that breaks the mean
value theorem.

Solution: Set f(x) = |x|. Then if a = −1, c = 2, the average slope from a to c is 1
2 , but the slope

of f is never 1
2 . The lack of differentiability at x = 0 allows a “jump” past all the intermediate

slopes from −1 to 1, so breaks the assumptions of the MVT.

Problem 9.10. Can you extend the mean value theorem (or Taylor’s theorem) to higher dimen-
sions? What is the extension?

Solution: Yes. If we restrict to just the MVT, then the analogue is simply that if there is a
path between two points over which the function remains differentiable, then somewhere along that
path the gradient direction will match the direction of the vector between the two points. If we
extend full-fledged Taylor’s theorem, then things get uglier because we have to consider Hessians
and higher-order tensors, but the basic ideas will still work.

Problem 9.11. Find the n-th order Taylor approximation for each function about z, where by
approximation, we mean dropping the correcting term with the γ.

(i) f(x) = x3, n = 1, z = 1

Solution: T (x) = 1 + 3(x− 1)

(ii) f(x) = x2, n = 2, z = 1

Solution: T (x) = 1 + 2(x− 1) + 2
2!(x− 1)2 = x2

(iii) f(x) = x2, n = 3, z = 1

Solution: Same as previous.

(iv) f(x) = ex, n = 100, z = 0

Solution: T (x) = 1 + 1x+ 1
2!x

2 + · · · =
∑100

k=0
xk

k!

In math courses my experience is that we often fail to emphasize what this theorem is good for.
After all, if I know the function, why am I using derivatives to approximate the function? We don’t
always know the function, or have an analytical derivative available.

21This can actually be quite subtle. The bounds on the remaining error shrink as we add more terms, but there is
no guarantee that less terms will not perform better, even though their bounds are worse

46



Abram

Example 9.3. Consider calibrating a model. For concreteness, you have a consumption-savings
model, and want to match some level of aggregate assets. Within this setting, holding everything
else in the model constant, we can consider the assets level as a function of, say, the interest rate,
a(r). The rub is that we can find a(r) for any given r, but we do not know the analytical form.
Gradient descent takes advantage of the fact that we can approximate a(r) by a first-order Taylor

expansion, and we can computer numerical (approximate) derivatives via a(r+h)−a(r)
h . The shiny

new way to do this is with automatic differentiation (look it up if interested).

9.5 Inverse Function Theorem

This next one is a bit strange, and not always the most useful, but it can often be helpful when we
need an inverse for part of a proof (say existence or uniqueness, for example). Basically, if things
are sufficiently “non-constant”, we can locally invert a function.

Theorem 9.6 (Inverse Function). Suppose f : X → X is smooth, a ∈ X, and Df(a) : X → X is
bijective. Then

(i) There exist open sets U, V ⊂ X such that a ∈ U , f(a) ∈ V , and f : U → V is a bijection

(ii) f−1 : V → U is smooth, and D[f−1(x)] = Df(f−1(x))−1

I’m guessing if you saw this in a real analysis course at first it blew your mind a little bit, but my
hope is that my phrasing makes things not too bad. The gist of it is that if the derivative at a
point is invertible, then we can find a little area around that same point where the function itself
is invertible.

Example 9.4. By far the clearest way to see this theorem in action (and how it breaks) is with
a baby example. Consider f(x) = −(x − 1)2 + 1, and let 0 < a < 1. Then f is smooth, and
Df(a)(x) 7→ −2(a − 1)x is bijective (aka Df(a) ̸= 0). This case is simple enough we can even
construct U and V without much hassle. Let U = (0, 12(a+ 1)), V = (0, f(12(a+ 1))), and we have
f−1(x) = 1−

√
1− x. If we instead consider a = 1, then Df(a) = 0, and indeed intuitively there is

no way to build an inversion, since f will fail the “horizontal line test” over any open neighborhood
containing a = 1.

Problem 9.12. Consider the inverse demand curve f(Q) = 1
Q − 1

1−Q for Q ∈ (0, 12), and the
(elastic) inverse supply curve g(Q) = P . Use the inverse function theorem to say that equilibrium
Q is a smooth function of P .

Solution: The equilibrium will be the Q such that f(Q) = g(Q) = P , and there is not a closed-
form, due to the form of f . Since f is smooth and strictly monotonically decreasing, it is bijective for
Q in (0, 12), and therefore there exists a smooth inversion f−1(P ) which maps prices to equilibrium
quantities.

9.6 Implicit Function Theorem

The Inverse Function Theorem, Implicit Function Theorem, and Rank Theorem are tightly linked,
and with the proper formulation any one can be used to prove the other two. I start with Inverse
because it is my favorite and what I find the most useful, but now we can quickly go through
Implicit. I’m skiping Rank, but you can look it up yourself (say in (Rudin, 1976)) if interested.
Whereas the Inverse FT discussed smooth mappings in the context of directly mapping from a
space to itself, The Implicit FT instead uses the context of an implicit manifold which we may
want to say things about.
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Theorem 9.7 (Implicit Function). Suppose f : X×Y → X is smooth, (a, b) ∈ X×Y is such that
f(a, b) = 0, and Db

Xf : X → X is bijective (Db
X denotes only taking the derivatives with respect

to the X coordinates, holding the Y coordinates at b). Then

(i) There exists an open set U ⊆ Y and a smooth mapping g : U → X such that b ∈ U , g(b) = a,
and f(g(y), y) = 0 for all y ∈ U .

(ii) g is smooth and satisfies Dg = −[Dy
Xf(g(y), y)]−1D

g(y)
Y f(g(y), y)

Problem 9.13. Suppose the equilibrium of a system of interest is expressed as

log y + cy = k

Let f map from exogenous parameters (c, k) to the solution y of the system. How does y depend
on c and k (what are∂f∂c and ∂f

∂k )?

Solution: We can rewrite the equilibrium condition in terms of (c, k)

log f(c, k) + cf(c, k) = k

Then we differentiate with respect to c.

1

f(c, k)
Dcf(c, k) + f(c, k) + cDcf(c, k) = 0

So

Dcf(c, k) = −
[

1

f(c, k)
+ c

]−1

f(c, k)

We can do the same with k.

1

f(c, k)
Dkf(c, k) + cDkf(c, k) = 1

⇒ Dkf(c, k) = −
[

1

f(c, k)
+ c

]−1
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10 Fixed Point Stuffs

There’s a whole area of math devoted to understanding fixed points. As economists, we are inter-
ested in having these results in our pockets for proving existence, uniqueness, and even construction
or search for equilibria. First the definition:

Definition 10.1. A fixed point of f : X → X is any point satisfying f(x) = x.

So at a fixed point, all the “forces” that the function takes into account balance out and x is
unmoved.

10.1 Contraction Mapping Principle

We start with, I’m not gonna mince words, the best fixed point theorem. It gives existence,
uniqueness, a method to find the fixed point, the proof is easy, and the intuition is easy.

Definition 10.2. An operator φ : X → X on a metric space (X, d) is a contraction if there exists
0 ≤ ρ < 1 such that d(φ(x), φ(y)) ≤ ρd(x, y) for all x, y ∈ X. The minimum ρ for which this is
true is called the modulus of φ.

Problem 10.1. Prove that a contraction is Lipschitz continuous.

Solution: The modulus ρ is just the Lipschitz constant.

Problem 10.2. We need to refresh geometric series real quick. Let |a| < 1, and find
∑∞

i=0 a
i,

taking as given that it is finite. (Hint: figure out how to write the series as an equation depending
on itself, then solve the equation, assuming the sum is finite.)

Solution: Here is the trick, since we are given that the sum is finite. Let S be the sum. Then
note that 1 + aS is also the sum, so S = 1 + aS, and we solve to find S = 1

1−a .

Theorem 10.1 (Banach Contraction Mapping). Let (X, d) be a complete metric space, and φ :
X → X a contraction with modulus ρ. Then there exists a unique fixed point of φ, and furthermore
the sequence φn(x) converges to the fixed point exponentially quickly for any x ∈ X.

Proof. We start with existence, and get the convergent sequence result along the way. Let x ∈ X
be arbitrary, and consider the sequence xn+1 = φ(xn). We want to show this is a Cauchy sequence,
because then we can say it converges. Let m > n, and note
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d(xn, xm) ≤
m−n−1∑

i=0

d(xn+i, xn+i+1)

≤
m−n−1∑

i=0

d(xn+i, φ(xn+i))

≤
m−n−1∑

i=0

ρid(xn, φ(xn))

≤ d(x, φ(x))ρn
m−n−1∑

i=0

ρi

≤ d(x, φ(x))ρn
∞∑
i=0

ρi

= d(x, φ(x))
ρn

1− ρ

Then we can see that for any ϵ > 0, there exists N such that n,m > N implied d(xn, xm) < ϵ, so
our sequence is Cauchy. Therefore its limit exists, and we will call it x∗.

Now we note

φ(x∗) = φ( lim
n→∞

xn)

= lim
n→∞

φ(xn) (φ (Lipschitz) continuous)

= lim
n→∞

xn+1 (By def of sequence)

= x∗

Therefore we have shown that φ(x∗) = x∗, and the exponential convergence can be shown by con-
sidering the sequence we constructed.

Lastly, we suppose x∗ and y∗ are fixed points. Then d(x∗, y∗) = d(φ(x∗), φ(y∗)) ≤ ρd(x∗, y∗). Since
ρ < 1, this can only be the case if d(x∗, y∗) = 0, in which case x∗ = y∗.22

So the proof gives us a way to find the fixed point, and it could not be simpler: iterate on the
contraction until you are happy with the convergence23. The intuition should also be clear by now:
the contraction pushes elements strictly closer together, so we find the points that everything is
getting pushed towards.

Example 10.1. Probably the simplest contraction is f(x) = ax, where |a| < 1, as it has modulus
|a|, and fixed point 0.

22This uniqueness bit is a good example of a proof which is often done by contradiction, but a direct proof is just
as easy.

23This is known as Picard iteration. It underlies many proofs for the existence of solutions to ODEs.
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Example 10.2. One of my favorites: Take a to-scale map of a country and lay it on the ground
of the country. The mapping which takes a point in the country and maps it to its position on the
ground under the corresponding point on the map is a contraction. There exists a unique point of
the map which is exactly on top of its physical counterpart!

Problem 10.3. Find a modulus and fixed point of the following contractions

(i) f(x) = k + ax, k ∈ R, |a| < 1

Solution: Directly, we see the modulus is |a|

|f(x)− f(y)| = |ax− ay|
= |a||x− y|

The fixed point can be solved easily as well, since we know it exists and is unique.

x = k + ax

⇒ x =
k

1− a

(ii) The map that takes a point (x, y), converts it to polar coordinates, scales the radius by |a| < 1,
and rotates the angle by k radians.

Solution: The rotation does nothing for the modulus, since any two points are rotated the
same amount, so all that matters is the scaling of the radius. Again, |a| will be the modulus.
The fixed point is the origin.

Problem 10.4. Consider f(x) = Ax, where A is a symmetric n× n matrix. What is a condition
for this to be a contraction? Prove it. Can you generalize this to operators more generally?

Solution: Since A is symmetric, there exists an orthonormal eigenbasis for the operator, and a
sufficient condition for A to be a contraction is that all of the eigenvalues are inside the unit circle.
Formally,

∥Ax−Ay∥2 = ∥A(x− y)∥2 (A linear)

= ∥A(
n∑

i=1

xivi −
n∑

i=1

yivi)∥2 (vi are a basis)

= ∥
n∑

i=1

(xi − yi)λivi∥2 (vi are eigenvectors)

=
n∑

i=1

((xi − yi)λi)
2∥vi∥2 (vi are orthogonal)

≤ max
i

|λi|2
n∑

i=1

|xi − yi|2∥vi∥2 (|λj | ≤ maxi |λi| for all j)

= max
i

|λi|2
n∑

i=1

∥(xi − yi)vi∥2 (From norm definition)

= max
i

|λi|2∥x− y∥2 (vi orthogonal)
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We take the square root and see ∥Ax − Ay∥ ≤ maxi |λi|∥x − y∥, giving the desired result. This
eigenvalue result will generalize to (self-adjoint) operators if we instead require the spectral radius
to be inside the unit circle.

If a function R → R is differentiable, then we can use the derivative to show a mapping is a
contraction, in some cases.

Theorem 10.2. If f : R → R is differentiable, and there exists an interval [a, b] such that x ∈ [a, b]
implies |f ′(x)| ≤ c for some c < 1, then f is a contraction over [a, b]

Proof. For x < y ∈ [a, b], the mean value theorem implies there exists z ∈ [x, y] such that f ′(z)(y−
x) = f(y)− f(x). Then

|f(y)− f(x)| = |f ′(z)(y − x)|
≤ |f ′(z)|y − x| (Cauchy-Schwartz)

≤ c|y − x|

where the last line is by assumption since z ∈ [a, b].

Example 10.3. Consider a simple growth model

kt+1 = f(kt)

= Akαt

Then f ′(x) = Aαxα−1, so for x > (Aα)
1

1−α we have f ′(x) < 1 and f is a contraction for [(Aα)
1

1−α +

ϵ,M + (Aα)
1

1−α + ϵ] for any ϵ,M > 0.

Example 10.4. Bellman equations. You’ll see them soon enough, so no reason for me to go into
detail now.

10.2 Brouwer

Sometimes no contraction is available, but we at least know the function of interest is continuous,
and we can consider it in a sufficiently “nice” space. Then we can sometimes still get existence of
a fixed point.

Theorem 10.3 (Brouwer). Every continuous function from a closed ball of a Rn into itself has a
fixed point.

This should look familiar from a problem above, where we proved this in a super particular and
easy setting.

Theorem 10.4 (Schauder). Every continuous function f : K → K, where K is a convex compact
(nonempty) subset of a Banach space, has a fixed point.

The proofs for these theorems are somewhat more involved, though they do provide some intuition
for what is going on. In some sense, proving them relies on an “iterative trapping” argument,
wherein we show that some point must get mapped to a smaller and smaller set of points near it,
until we show that at the limit this collapses to being the point itself. The continuity, compactness,
and convexity are all crucial.
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Problem 10.5. Construct examples where all of the conditions of Schauder’s fixed point theorem
hold, except for the following, and show that no fixed point exists in each example.

(i) f is not continuous

Solution: K = [0, 1], f(0) = 1 and f(x) = 0 for x ̸= 0. Since the only values taken by f are
0 and 1, we just need to check those two points, which both fail, so there is no fixed point.

(ii) K is not compact

Solution: K = (0, 1), f(x) = x2. A fixed point would require x2 = x, so x ∈ {0, 1}, but
neither of those values are in (0, 1) (though of course every other value in that interval is
achieved).

(iii) K is not convex

Solution: K = [0, 13 ]∪ [23 , 1], f(x) =
2
3+x for x ∈ [0, 13 ], and f(x) = −2

3+x for x ∈ [23 , 1]. You
may protest this function doesn’t “feel” continuous, because it seems like it jumps between
the intervals, but the definition of continuity allows this, since the sets are disjoint.

Note that these theorems say nothing about uniqueness. This is actually quite annoying, because we
may have contexts where we can show that Brouwer does what we want, but we desire uniqueness.
In this case we need to rely on other arguments, such as showing that if two equilibria were to
exist, then a better one between them would exist, and getting a contradiction.

Example 10.5. Consider again the map example from above. Now you are allowed to also stretch
and compress the map before putting it on the ground. Sometimes we will still have a contraction,
but if you stretch map carefully enough we will not. However, the mapping is still continuous, so
Brouwer lets us say there exists at least one fixed point.

Problem 10.6. Explain how to stretch the map so that there is more than one fixed point. Can
you get exactly two? What if I let you tear the map? What does tearing the map do to our
mapping?

Solution: To get more than one fixed point, simply choose any number of points we want to
remain fixed, and stretch the map to hit these points, so that the rest of the map may be stretched
or compressed. As for exactly two: I don’t have a proof, but I believe the answer is no, we cannot
ge exactly two. It seems that no matter how we stretch the map, if two points are fixed, there will
exist a path of fixed points between them.

Problem 10.7 (Cournot). Consider a set of n firms producing the same product. Each firm i
faces market price P (q) = a − b

∑n
i=1 qi, and controls their own quantity of production, qi. They

face unit costs c.

(i) What the profit function πi(q) for firm i?

Solution:

πi(q) = P (q)qi − cqi

= aqi − bqi
∑

qj − cqi
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(ii) Holding fixed qj for j ̸= i, what is the FOC and optimal qi for firm i?

Solution: the FONC is

0 = a− b
∑
j ̸=i

qj − 2bqi − c

So optimal q∗i is

q∗i =
a− b

∑
j ̸=i qj − c

2b

(iii) If all firms play this optimal qi and this is common knowledge, what is the optimal q∗ that
all firms choose?

Solution: We impose symmetry

q∗i =
a− b

∑
j ̸=i qj − c

2b

=
a− b(n− 1)q∗i − c

2b

⇒ q∗i =
a− c

b(n+ 1)

(iv) ∗∗Show the symmetric equilibrium is the unique one, i.e. there does not exist an asymmetric
q∗ which is also an equilibrium.

Solution: This is a somewhat rare ask in economics, but we are checking that a problem
which looks pretty symmetric and seems unlikely to have asymmetric solutions actually does
not have them. To be formal, we want to check that there is not an asymmetric q which
satisfies all the optimal q∗i at once. What is going to help us is the linearity of the reaction
functions, which we recall

q∗i =
a− c

2b
− 1

2

∑
j ̸=i

qj

We will reformulate this as a linear system by letting B be a vector with a−c
2b in every entry,

and A be a matrix with 0 on the diagonal entries, and −1
2 everywhere else, so we have

q = B +Aq

The solution seems to be

q∗ = (I −A)−1B
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which is unique, provided (I−A)−1 exists. It does, which can be verified any number of ways,
but my preference is to use a matrix calculator to find the inverse of I − A for a few small
n, then guess at the generality and prove that it works. This strategy yields that (I − A)−1

is the matrix which has 2n
n+1 along the diagonal, and − 2

n+1 elsewhere. Anyway, we just care
that the above solution is well-defined, which shows that q∗ is the unique solution to which
satisfies all the reactions simultaneously. As a final point, note that f(q) = B + Aq is not
a contraction mapping in general, as one of the eigenvalues of A will be outside of the unit
circle. If it were a contraction, it might have been easier to just show that f is a contraction,t
then apply the contraction mapping principle for uniqueness, but alas.

(v) What is the implied price?

Solution:

P (q∗) = a− b
∑

q∗i

= a− bn
a− c

b(n+ 1)

=
a+ nc

n+ 1

(vi) What are the implied firm and aggregate profits?

Solution:

πi(q
∗) = P (q∗)q∗i − cq∗i

= aq∗i − bq∗i nq
∗
i − cq∗i

= (a− c)
a− c

b(n+ 1)
− bn

(
a− c

b(n+ 1)

)2

=
1

b

(
a− c

n+ 1

)2

Π(q∗) =
∑

πi(q
∗)

= nπi(q
∗)

=
n

b

(
a− c

n+ 1

)2

(vii) As n → ∞

(a) What does q∗ go to?

Solution:

lim
n→∞

q∗i = lim
n→∞

a− c

b(n+ 1)

= 0
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(b) What does
∑

i q
∗ go to?

Solution:

lim
n→∞

∑
q∗i = lim

n→∞
nq∗i

= lim
n→∞

n(a− c)

b(n+ 1)

=
a− c

b

(c) What do firm and aggregate profits go to?

Solution:

lim
n→∞

πi = lim
n→∞

1

b

(
a− c

n+ 1

)2

= 0

lim
n→∞

∑
πi = lim

n→∞

n

b

(
a− c

n+ 1

)2

= 0

The above problem is standard firm theory stuff. Now, for fun, we’ll put a good old “Chicago Price
Theory” spin on it. The following question is somewhat open-ended, and there are no “right” or
“wrong” answers, but you should use the above model and results to reason through your responses.
Channel your inner Friedman/Becker/Murphy.

Problem 10.8. You are now an economic policymaker. The industry of interest has a tendency
to coalesce into a small number of firms. You have legislative tools that will allow you to “trust-
bust”, but you can also choose to not use your tools, which will lead to firms combining and/or
forming cartels. You also (later in the problem) have the ability to tax the market, and this tool is
independent of your trust-busting hammer.

(i) If you believe that (outside of the market within the model thus far) these goods provide a
positive externality, what policies do you pursue?

Solution: A positive externality will mean that the market demand P (q) is lower than the
demand curve PS(q) which takes into account the externalities. Therefore you will want to
pursue policies which increase the quantity in the market (to some degree), so will want to
trust-bust, since our above results show that total quantity increases in the number of firms.

(ii) Same as above, but negative externality.

Solution: Now PS(q) is lower than P (q), so we tend to want lower than the aggregate
quantity. This will mean we do less trust-busting, or even maybe promote consolidation.

(iii) A friend makes the statement “We need to break up the big firms, since their market power
is allowing them to pollute more than if there were more competition.” Does this (highly
stylized toy) model support or refute this claim?
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Solution: In our model, as the number of firms decreases, individual firms produce more, but
there is less aggregate production. So the claim is somewhat supported in that market power
(low n) is allowing individual firms to produce/pollute more, but that same market power is
leading to an implicit collusion of aggregate quantity restriction to maintain relatively higher
prices, which will mean aggregate pollution is lower, which is probably what we care more
about.

(iv) Suppose this industry, for whatever reason, is particularly easy to tax, but the industry also
produces a massive negative externality. You have a big new budget bill that needs funded.
What do you do?

Solution: Great. Negative externality means we will want to tax, and this industry is easy,
so we can fund our budget bill.

(v) Does your above answer change if this industry is comparatively harder to tax?

Solution: Not really, except it may be harder to fund the bill, so we may want to tax more
(if the bill is important) or less (if the difficulty of taxing is prohibitively costly).

(vi) Evaluate the following statement: Effective and simple tax policy will decrease pollution.

Solution: Seems likely to hold. Per-unit taxing is effectively an increase in c, which will
decrease q∗i and

∑
q∗i regardless of n.

(vii) Evaluate the following statement: Monopolies are bad. Externalities are bad. A monopoly
market with externalities must be worse than that same market with only one or the other!

Solution: So the tipoff is that massively generalizing statements should always make you
skeptical. In particular, if we care about pollution, it may be the case that the monopolist’s
goals (restrict quantity to increase price and raise profits) are aligned with the planner’s goals
(restrict total quantity to reduce total pollution). So the market power may be correcting for
the externality (to some degree).

Lest you think I have forgotten: the above is a toy model! Be careful with taking the “answers” to
the above question to the real world! Do “innocuous” changes to the above model flip the results,
or at least change the quantitative outcomes? This is a rhetorical question, but one we should
always ask if we want to take price theory implications and apply them to the real world.

10.3 Kakutani

We skipped hemicontinuity and correspondences, but Kakutani’s fixed point theorem is an exten-
sions of Brouwer to correspondences, which map not to values, but to sets24.

Definition 10.3. A correspondence f : X → 2Y is a mapping which maps elements to sets.

Example 10.6. f(x) = [−x, x] fans out as x increases.

Example 10.7. All functions (mappings to a single point) are correspondences.

Correspondences come with their own terminology. I think the terms are fairly intuitive, though,
so hopefully the following definitions are not too surprising.

24Though, of course, a set is just an element of the power set.

57



Abram

Definition 10.4. A property P of the graph of a correspondence refers to P holding under the
product topology of X × Y 25 for the set {(x, y) | y ∈ f(x)}.

Definition 10.5. A correspondence is P -valued, for some property P , if for all x ∈ X, f(x) satisfies
P .

Example 10.8. We will need these specifics in Kakutani’s fixed point theorem.

(i) f has a closed graph if {(x, y) | y ∈ f(x)} is closed under the product topology of X × Y

(ii) f is non-empty valued if f(x) ̸= ∅ for all x ∈ X.

(iii) f is convex-valued if f(x) is a convex set for all x ∈ X.

Finally we need to amend our definition of “fixed point” slightly. The following definition matches
our above definition when we restrict correspondences to functions.

Definition 10.6. We say x ∈ X is a fixed point of a correspondence if x ∈ f(x).

Finally, we have all the ingredients to extend Brouwer’s fixed point theorem to the case of corre-
spondences.

Theorem 10.5 (Kakutani). Let X be compact, convex, and non-empty. If f : X → 2X is a
correspondence which has a closed graph, is non-empty valued and convex valued, then f has a
fixed point.

Problem 10.9. The function f(x) = [0,−4(x − 1
2)

2 + 1] satisfies the conditions for Kakutani on
[0, 1]. What are the fixed points?

Solution: If we draw a picture, we will see that f(x) is a the region between an inverted parabola
and the horizontal axis, where the parabola has its apex at (12 , 1) and intersects (0, 0) and (1, 0).
Then every point is a fixed point up until the line g(x) = x exits the parabola. This occurs at

x = −4(x− 1

2
)2 + 1

⇒ 0 = (−4)x2 + (3)x

⇒ x =
3

4

The set of fixed points is [0, 34 ].

Problem 10.10. Find an example of f and X that satisfy the conditions of Kakutani except for
the following, and thus there is not a fixed point in each example.

(i) f does not have a closed graph

Solution:

X = [0, 1]

f(x) =


1 x = 0

(0, 12x] x ∈ [0, 12 ]

[12 + 1
2x, 1] x ∈ (12 , 1]

0 x = 1
25“Product topology” is not defined in these notes, but it is intuitively what you think and want it to be for our

contexts. If you are curious, do some further reading/Googling.
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(ii) f is not non-empty valued

Solution:

X = [0, 1]

f(x) = ∅

(iii) f is not convex-valued

Solution:

X = [0, 1]

f(x) =


[12 + 1

2x, 1] x ∈ [0, 12)

[14 ,
1
2 ] ∪ [34 , 1] x = 1

2

[12x,
1
2 ] x ∈ (12 , 1]

The above theorem was integral to the development of game theory. The reason correspondences
were needed (rather than just functions) is for the cases where the optimal strategy is not unique
(e.g. sometimes all strategies are optimal), which turn out to be important, at least in terms of
theory, for showing that equilibria exist.

Problem 10.11. Consider a 2× 2 game (like Prisoner’s Dilemma, Stag Hunt, Matching Pennies,
etc.). Consider the mapping BR(a1, a2), which takes an action by each player, then maps to the
optimal action set for each player, fixing the other player’s option at the given value.

(i) If we restrict to pure strategies, can we guarantee a fixed point exists? Use one of the above
theorems to prove so, or find a counterexample.

Solution: No. Consider matching pennies.

[
(1,−1) (−1, 1)
(−1, 1) (1,−1)

]
If either player uses a pure strategy, the best response of the other player will be a pure
strategy. But then the first player’s strategy was not optimal, so not a fixed point.

(ii) Can we say anything about uniqueness with only pure strategies?

Solution: No. Consider the game where players want to match (can’t remember the classic
name for this).

[
(1, 1) (−1,−1)

(−1,−1) (1, 1)

]
Both players may play the first or second option, as long as they match, and we have a fixed
point.

59



Abram

(iii) If we allow mixed strategies, can we guarantee a fixed point exists? Use one of the above
theorems to prove so, or find a counterexample.

Solution: With mixed strategies allowed, we may consider X = [0, 1]2 to be the probability
of selecting the first option for each player, f to be the mapping from the actions of each
player to the best response correspondences. Then the conditions for Kakutani’s fixed point
theorem are satisfied, there is a fixed point.

(iv) Can we say anything about uniqueness, when we allow mixed strategies?

Solution: No. Consider the same game as above where we had two fixed points. Allowing
mixed strategies can only add fixed points (pure strategies are a special case of mixed strate-
gies), and in fact in this case there is one mixed strategy equilibrium, where each player plays
each action with probability 1

2 .

(v) Economically, what do we call a fixed point in this context (think Russell Crowe)?

Solution: It’s a Nash equilibrium.

10.4 General Note

Hopefully, it is now somewhat clear why fixed point theorems are so often discussed for economists:
we are obsessed with equilibria, and FPT often give conditions for us to know when equilibria exist.

Intuitively, Econ 101 probably taught you how to think about equilibria forming by saying that
supply has to equal demand, and if one or the other move (say demand increases) then there is
a mismatch at the current price (quantity demanded exceeds quantity supplied), so a new price
comes about (a higher one) such that supply equals demand. In numerically solving models, this is
almost exactly what we do. We’ll try a price, see if markets clear, and adjust the price until they
do. More generally, a model takes a set of agent choices, and maps to a new set of implied choices
(think NE). The fixed point of this operator is the equilibrium.

Example 10.9. An economy has n agents which (heterogeneously) produce and consume m goods
types. For any given m-dimensional price vector p, each agent will be willing to supply a certain
set of goods si(p), and will demand a certain quantity of goods, di(p). The excess demand of the
economy is then z(p) =

∑n
i=1 di(p) −

∑n
i=1 si(p), and the economy is in equilibrium only when

z(p) = 0. The fixed point application is that a given supply of goods will imply a price that gives
the implied demand. So we can consider this mapping from supplies of goods to demands of goods
(through the price mechanism!) and its fixed point is the equilibrium.

Example 10.10. A more complicated example would be to think of a dynamic heterogeneous-
agent model (i.e. HANK), wherein the distribution of agents over the state space maps to a price
(through supply side), which then maps to an implied distribution of agents. The fixed point of
this model is an entire distribution. Sometimes, however, the model may be reduced instead to
pairing of a value functions and prices which imply the distribution, so we need only find the prices
that imply the value function that imply the distribution that imply the original prices.

Example 10.11. Yet another example from my idiosyncratic preferences for topics: spatial equi-
libria. In urban economics, or more generally spatial economics, we often search for the price vector
and/or spatial distribution that “balances” agglomeration and congestion forces so that no individ-
ual wants to move from where they live. We can make this dynamic by either allowing a constant
transition in the distribution to be taking place (stochastic steady-state) and/or by considering each
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agent atomistic (in which case the model becomes a mean-field game, and the “spatial shuffling”
averages out to have the distribution remain stable).

Problem 10.12. Find a paper with a structural model, and check that the equilibria match our
idea of a fixed point in these notes (figure out what variables make up x and what equations make
f). Do the authors prove existence and/or uniqueness, and if so, with what theorem(s)? If they
don’t prove, what intuition do you have for existence/uniqueness (which may come from the above
theorems applying or almost applying)?

Clearly, the point is that we are looking for way for everything to be “fixed” (but time may be part
of the state space!), and there may be multiple ways of viewing which object we start with and
want to consider as being mapped to itself.
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11 Optimization

One aspect of economics that is quite special is that we deal with humans, and in particular agents
that have choices and desires. Therefore, in almost any economic model (even reduced-form), in
the background there is some degree of optimization taking place. In order to model this, we spend
a lot of time thinking about how to model and solve optimization problems.

11.1 Unconstrained

An unconstrained problem is of the form

max
x

f(x)

If f is not smooth, and we don’t have additional info about it, we basically have no theorems
about how to find the max, and have to manually search. If f is smooth, then we can consider the
derivative, Df , and move in the direction in which the function is increasing26. If we are ever at a
point where f is not increasing in any direction, then we have a candidate for an extremum. If we
can further say that the derivative of the derivative D2f ≡ Hf is “positive” or “negative”, then
we can say the extremum is a local minimum or local maximum. This is not always possible. We
now clarify these ideas.

Theorem 11.1. Let f : Rn → R be smooth27. If Df(x) = 0 and Hf(x) is positive (negative)
definite, then x is a local minimum (maximum).

Requiring that the gradient Df(x) = 0 is the first-order necessary condition (FONC), and requiring
that the Hessian Hf(x) is definite is the second-order sufficient condition (SOSC). Note that in
one-dimension the SOSC is just checking the sign of f ′′(x), and that if Hf(x) is indefinite, we
cannot say anything about x (without further investigation).

Problem 11.1. Find all the critical points of the below functions, and identify them as minima,
maxima, or neither. Be sure to explain how you checked (you may need to be more creative than
just FONC and SOSC).

(i) f(x) = (x− 5)2

Solution: The FONC is

0 = f ′(x)

= 2(x− 5)

So x = 5 is the only critical point. It is a min because the Hessian is positive definite (f ′′ > 0)

f ′′(x) = 2 > 0

26On a computer this is gradient ascent.
27Smooth generally means C∞, but really C2 is fine here.
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(ii) f(x) = (x− 3)4

Solution:

The only critical point is x = 3, but the SOSC does not work because f ′′(3) = 0 (Hessian is
indefinite). We can directly verify that our point is a min, however, by noting that for x ̸= 3,
we may say x = 3 + ϵ, where |ϵ| > 0, and

f(x) = (x− 3)4

= ϵ4

> 0

= f(3)

(iii) f(x) = sin(x)

Solution: All the candiate solutions are x = π
2 + kπ, where k ∈ Z, since the FONC is

0 = f ′(x)

= cos(x)

The SOSC is

f ′′(x) = − sin(x)

=

{
> 0 min

< 0 max

When k is even, we have a max, and when k is odd, we have a min.

(iv) f(x) = sin(x) + x
2

Solution: our FONC is now

0 = f ′(x)

= cos(x) +
1

2

Then x ∈ {2
3π + 2πk, 43π + 2πk} for k ∈ Z. The SOSC is the same as above, so the 2

3π terms
are maxes, and the 4

3π terms are mins.

(v) f(x) = sin(x) + x

Solution: The FONC is now

0 = f ′(x)

= cos(x) + 1
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This is only satisfied at x = π + 2πk for k ∈ Z. The SOSC is unhelpful

f ′′(x) = − sin(x)

= 0

We can try directly checking values in the neighborhood of each x, and we will find that the
function is monotonically increasing, so the critical points are neither mins nor maxes.

(vi) f(x) =
√

|x|
Solution: The only critical point is the lack of differentiability at x = 0. We can check that
all other x yield f(x) > f(0), so the point is a min.

(vii) f(x, y) = (x− 2)2 + (y + 6)2

Solution:

FONCs

0 = fx = 2(x− 2)

0 = fy = 2(y + 6)

So the only critical point is (2,−6). The Hessian is

[
2 0
0 2

]
Clearly the eigenvalues are both 2, so the Hessian is positive definite, and the critical point is
a min.

(viii) f(x1, . . . , xn) =
∏n

i=1 x
αi
i −

∑n
i=1wixi, where wi > 0, αi ∈ (0, 1), and

∑n
i=1 αi < 1.

Solution: FONCs

αi

xi

∏
j

x
αj

j = wi

Then we make the following manipulations

wjxj
αj

=
∏
k

xαk
k =

wixi
αi

⇒ xj =
wi

wj

αj

αi
xi

⇒ wi =
αi

xi

∏
j

(
wi

wj

αj

αi
xi

)αj

⇒ xi =

w

αi

∏
j

(
wi

wj

αj

αi

)−αj

1−
∑

j αj
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The (i, j) entry of the Hessian is αi
xi

αj

xj

∏
k x

αk
k when i ̸= j, and αi

xi

αi−1
xi

∏
k x

αk
k when i = j. I

am not entirely sure how to show that this matrix is negative definite, however. I am guessing
some cleverness using that it is symmetric may work, and/or proving for the 2 × 2 (or even
1 × 1) case, then using induction. A simpler approach might be to simply show that the
function is concave, then use that concave functions are negative definite. Not sure how hard
the concavity proof is, though.

(ix) f(x1, . . . , xn) =
∏n

i=1 x
αi
i −

∑n
i=1wixi, where wi > 0, αi ∈ (0, 1), and

∑n
i=1 αi = 1.

Solution: Following the same steps as above, the issue is in the final step, since the 1−
∑

j αj

power is just 0. There are then three cases to consider. In the knife-edge case, the FONCs still

hold, if 1 =
∏

i

(
αi
wi

)αi

, and any level of production (respecting the relative levels of xi from

the FONcs) will yield zero profits. If instead 1 <
∏

i

(
αi
wi

)αi

, then profits increase with the

level of production, so there is no maximum level. Finally, if 1 >
∏

i

(
αi
wi

)αi

, then any positive

level of production leads to losses, so the maximum occurs at shutdown. The economics are
that output and costs scale linearly, so the question is just which one scales at a faster rate.

(x) f(x) =
∫ 1
0 ∥x(t)− k(t)∥2dt where k is a continuous function and the underlying space we are

optimizing over is continuous functions over [0, 1].

Solution: Though not proper calculus of variations, we can pointwise find the minimum,
which is simply x(t) = k(t). It is a minimum because the Hessian (which is a function over
[0, 1]2) is diagonal with negative entries on the diag, so all negative eigenvalues, so negative
definite.

Theorem 11.2. Suppose f : X → R obtains extrema at {x} and g : R → R is strictly increasing28.
Then the extrema of h(x) = g(f(x)) are {x}.

Example 11.1. As shown by the Cobb-Douglas examples above, firm production problems may
be considered unconstrained optimization problems. Kevin Murphy likes to make the point that
this is special and different from a consumer, precisely because a consumer faces a budget and
maximizes utility, whereas a firm is producing and may use production profits to finance factor
inputs.

11.2 Equality Constrained

An equality constrained problem is of the form

max
x

f(x)

such that g(x) = 0

As we might expect, these types of problems are, in general, even harder than unconstrained prob-
lems. However, if both f and g are smooth, we can use Lagrangian optimization to find the extrema.

Formally proving that Lagrangian optimization works is not particularly illustrative (though it is
worth going through once on your own). The intuition behind what is going on is helpful. Let’s
first lay out the ideas. We define the Lagrangian L(x, λ) = f(x) + λg(x), where λ matches the

28While g may not be differentiable, the infimum of its set of subderivatives is positive.
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dimension of g. We then find the critical points (x, λ) where Lx = 0 and Lλ = 0. These points
are our candidates for extrema, which we can then test with the SOSC or via other methods if
SOSC does not work. In reality, we typically just check the FONCs and make sure the problem is
sufficiently well-behaved beforehand.

Why does this work? Again consider gradient descent, except note that, by the construction of the
Lagrangian, g(x) = 0 at the critical points, since we require Lλ = 0. Thus, by adding λg(x) to
our f(x), we have created an unconstrained maximization problem which can only have solutions
where g(x) = 0. But anytime g(x) = 0, L = f . So it must be that we are finding the maximum
value of f , such that g(x) = 0.

Finally, is there anything to be taken away from the Lagrange multipliers? Yes! Note that Lg (the
derivative of the Lagrangian with respect to the constraint) is λ, so λ tells us the rate of change of
L (and by the envelope theorem29 f) when we relax the constraint.

Problem 11.2. For each of the following constrained optimization problems, find the maximum.
In all cases, pi > 0 for all i.

(i) f(x) =
∏n

j=1 x
αj

j , g(x) = w −
∑n

j=1 pjxj

Solution: The Lagrangian

L = f(x) + λg(x)

=
n∏

j=1

x
αj

j + λ

w −
n∑

j=1

pjxj


FONCs

αi

xi

n∏
j=1

x
αj

j = λpi

Solving for λ and setting equal yields (after cancelling the product term):

αi

pixi
=

αj

pjxj

⇒ xj =
αj

αi

pi
pj

xi

Then we can use the g constraint to find

29See below in the notes for more on the envelope theorem.
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w =
∑
j

pjxj

=
∑
j

pj
αj

αi

pi
pj

xi

⇒ xi =
αiw

pi

∑
j

αj

−1

(ii) f(x) =
∑n

j=1 αj ln(xj), g(x) = w −
∑n

j=1 pjxj

Solution: Note that f is just the log of f above, so a monotonic transformation, and the
solution must be the same. If you did not note that, you can solve directly again. Lagrangian

L =

n∑
j=1

αj ln(xj) + λ

w −
n∑

j=1

pjxj


FONCs

αi

xi
= λpi

⇒ αi

pixi
=

αj

pjxj

The remaining steps are as above.

(iii) f(x) = max{x1, . . . , xn}, g(x) =
∑n

j=1 pjxj − w, xi ≥ 0

Solution: Note that having any two xi > 0 is wasteful because only the max will contribute,
but both will be constraining spending. So only one xi > 0, but which one? The potential
levels of xi are xi =

w
pi
, so we want to choose to put the entirety of income into the lowest

price good.

(iv) f(x) = min{x1, . . . , xn}, g(x) =
∑n

j=1 pjxj − w

Solution: Having any two xi not be equal is wasteful, becuase the larger value will be
depleting income but not matter because it is not the min. Since they are all equal, we just
solve

w =
∑
j

pjxj

= x
∑
j

pj

⇒ xi = x =
w∑
j pj
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Problem 11.3. You are given k meters of fencing to make a rectangular fence. How do you build
the fence to house the maximum number of cattle?

Solution: Parameterize the length and width of the rectange by x and y, then we want to maximize
the area f(x, y) = xy subject to the constraint that the perimeter is k: g(x, y) = k−2x−2y. Then
the Lagrangian is

L = xy + λ[k − 2x− 2y]

The FONCs are

y = 2λ

x = 2λ

So it must be x = y, and

k = 2x+ 2y

= 4x

⇒ x = y =
k

4

Example 11.2. Consider the following problem: You are given a finite amount of cake today, and
know the cake will expire in one week, and you have to decide how to consume that cake. We won’t
go over this here, because you will see such problems in Nancy Stokey’s course in just a few weeks.
In brief, however, the problem will feel the same as above: maximizing a utility criterion subject
to a material (or budgetary) constraint.

11.3 Inequality Constrained

Not much is left to be said here. An inequality constrained problem takes the form

max
x

f(x)

such that g(x) ≥ 0

These types of problems are interesting and often require lots of case-checking, but usually in econ,
even thought we might phrase a problem as inequality constrained, we quickly find that the problem
is equality constrained.

A general cookbook for how to view this most general type of problem:

1. Find the unconstrained extrema of f . If any satisfy g(x) ≥ 0, keep them, but throw the rest
away.

2. Solve the constrained maximization problem.

(I) If the constraint is piecewise smooth, break into pieces and check each one.

68



Abram

(II) You may need to view a subset where g(x) = 0 as its own sub-inequality constrained
problem, and this process can be iterative.

I really included this section only for completeness, so do not want to dwell on it.

Problem 11.4. Minimize f(x) = x2+y2+z2 such that g(x) parameterizes the union of the ellipsoid
a(x−x0)

2+ b(y− y0)
2+ c(z− z0)

2− 1 and the box with vertices at (ei, fi) where i = 1, . . . , 8. Note
that you will have to find the max on the ellipsoid, then check each face of the box, then check
each edge of the box, then check each corner of the box, and finally compare all the extrema.

11.4 Envelope Theorem

The envelope theorem, or envelope condition, is one of those terms that gets thrown around a ton,
but I feel like no one ever fully explains it, and consequently most people don’t really know what
it is. One reason is that when people say “envelope ...” they are usually not citing it the way you
would cite a formal mathematical theorem, but instead meaning the general idea of an envelope,
which is what we discuss here. If you want the technical details, go read Wikipedia, but I don’t
find it as enlightening.

The basic idea of the envelope condition that is mostly used is that, at an optimum, the marginal
value of increasing one choice variable, but not readjusting the others, is the same as if you did
adjust the others. (Draw picture)

You can open the example Simple Production in Desmos to play with parameters and see the en-
veloping in action (I suggest starting by clicking the play button by the K parameter). Note that
the derivative of VR matches the derivative of V , at the point where they coincide. This is what
the envelope theorem tells us should happen.

The parameters are

• w: labor wage

• r: capital rental

• α: capital intensity

• β: labor intensity

• A: total factor productivity

• K: fixed capital level for VR

• KL: outputs optimal capital for a given labor level

• VR: value for varying levels of labor, given fixed capital K

• V : value for varying levels of labor, given that capital also adjusts optimally

Can you interpret what is going on? Do you know where KL came from? I’ve left this intentionally
vague so you can think a bit.
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11.5 KKT

The following theorem generalizes the Lagrange multiplier result to inequality constraints.

Theorem 11.3 (Karush-Kuhn-Tucker). Let f : X → R, g : X → Rm. If x is a (local) maximum
of f , such that g(x) ≥ 0, and Dg(x) has full row rank, then there exists λ ∈ Rm such that30

λ ≥ 0

g(x) ≥ 0

λ⊙ g(x) = 0

Df(x) + λ ·Dg(x) = 0

The first three expressions above are the complementary slackness conditions, named so because if
one of the first two conditions is slack (> 0) the other must bind. The requirement Dg(x) has full
row rank is the constraint qualification.

Let’s again think through the logic, as we did with Lagrangians. We may again consider the La-
grangian L(x, λ) = f(x) + λ · g(x), which has the property that L(x, λ) = f(x) when λ · g(x) = 0.
With Lagrangians, this constraint was always satisfied because g(x) = 0 was a requirement. The
amendment here is that if g(x) > 0 for some indices, then we require λ = 0 instead.

The interpretation of the Lagrange multipliers has barely changed: For positive Lagrange multi-
pliers, they still answer “what would be the marginal increase in L(x, λ) = f(x) if g(x) = 0 were
relaxed?”. For zero Lagrange multipliers, the interpretation should now be clear: the marginal
increase is zero because g(x) = 0 is not a binding constraint!

Again, these conditions are necessary but not sufficient.

Problem 11.5. Consider the problem of maximizing f(x, y) = x2 + y2 subject to x ≥ 0, y ≥ 0.
Show that all the conditions of KKT are satisfied at some x, but that it is not a maximum.

Solution: For this problem g(x, y) = (x, y), so Dg has full row rank. Our candidate is the origin,
where it is easy to check that for λ = (0, 0), all the conditions of KKt hold, but of course this is a
min, not a max.

A general cookbook approach is then:

1. Setup L(x, λ) = f(x) + λ · g(x).

2. Take the first order conditions.

3. See if the nature of the problem allows for eliminating solutions, or narrowing such that λ is
necessarily positive or zero. Inada conditions often imply λ > 0 for some indices, or sometimes
all.

This last step is clearly vague and tricky. If would be nice if we had some flavor of SOSC to narrow
our scope of solutions, and maybe even obtain uniqueness. We do.

30The symbol ⊙ stands for the Hadamard product. This is element-wise multiplication, so if x and y are n-vectors,
then so is x⊙ y, and it is (x1y1, . . . , xnyn).

70



Abram

Theorem 11.4. Suppose f : X → R is (strictly) concave, X is convex, g : X → Rm is (strictly)
concave component-wise, and there exists x ∈ int(X) such that g(x) > 0 (all indices). Then there
exists (unique) (λ∗, x∗) satisfying the KKT conditions iff x∗ is a local (global) maximum.

The only new weirdness is the g(x) > 0 in the interior condition, called Slater’s condition. Basically,
this says that we must be optimizing over a space which has an interior relevant to the problem: if
g(x) = 0 everywhere in the interior, we are on an “edge” of the constraint set.

The concavity conditions are just a way of making sure that we find local maxima instead of
minima. If they are strict, then the local maximum must also be global. We may relax the
concavity assumptions somewhat.

Theorem 11.5. Take all the conditions of the above theorem except only require that f be quasi-
concave, g be quasi-concave component-wise, and don’t require Slater’s condition. Suppose (x∗, λ∗)
satisfy the KKT conditions. Then x∗ is a global maximum provided either f is concave, orDf(x∗) ̸=
0.

Note the difference in this statement: the conditions are no longer necessary. If satisfied, we have
a maximum, but it is possible to not satisfy them and still have a maximum. Strengthening this
theorem to make the FOCs into FONCs recovers one of the above two theorems.

11.6 Duality

Another way to think about constrained optimization is via a min-max game. Instead of considering
an optimizer that must satisfy some constraints, we instead consider either an unconstrained or
more simply constrained pair of optimizers which have different controls, and are optimizing in
opposite directions. To be concrete, consider again the original problem,

max
x

f(x)

such that g(x) ≥ 0

We will call solutions O. Also recall the Lagrangian

L(x, λ) = f(x) + λg(x)

Above, we considered that candidates satisfy Lx = Lλ = 0. I now claim that we can take this FOC
idea a step further, and say that the original problem is equal to the following primal problem,

max
x

min
λ≥0

L(x, λ)

We will call solutions to this problem P .

Problem 11.6. Show the above equivalence statement in the following steps:

(i) Argue that when g(x) ≥ 0, then f(x) = minλ≥0 L(x, λ)
Solution:

If g ≥ 0, then the minimizer can do no better than choosing λ = 0, in which case the λg term
is zero, and the given statement holds.
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(ii) Argue that when gi(x) < 0 for any i, then minλ≥0 L(x, λ) is unbounded below (so the min
does not exist).

Solution: The minimizer can just choose λi arbitrarily large and drive L arbitrarily negative.

(iii) Use the above statements to show that O = P

Solution:

P = max
x

min
λ≥0

L(x, λ) = max
{x|g(x)≥0}

f(x) = O

The first equality is the definition of P . The second equality is because we want to rule out
the −∞ solutions (they are never optimal), and the equivalence follows given that we have
ruled out the g < 0 solutions. The final equality is just the definition of O.

Thus far we have only had an alternative way to think of the (same) optimization problem. Now
we consider a different problem, which will in some cases be the same problem. The dual problem
is

min
λ≥0

max
x

L(x, λ)

We will call solutions D.
I see your immediate confusion. That is the same problem, no? Switching the min and max should
not matter since the (x, λ) are picked jointly? Your intuition is good for many (most?) economic
problems, but can fail. Let’s start with a fail to motivate why we need to be careful

Problem 11.7. Show P ̸= D for the following function.

L(x, λ) =

{
0 {x = 0, λ = 0} ∪ {x ̸= 0, λ ̸= 0}
1 {x = 0, λ ̸= 0} ∪ {x ̸= 0, λ = 0}

Solution:

D = min
λ≥0

max
x

L(x, λ)

= min
λ≥0

L(1, 0)1{λ = 0}+ L(0, λ)1{λ ̸= 0}

= min
λ≥0

1

= 1

̸= 0

= max
x

0

= max
x

L(0, 0)1{x = 0}+ L(x, 1)1{x ̸= 0}

= max
x

min
λ≥0

L(x, λ)

= P
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Now we want to consider the way in which P ̸= D, and when P = D, and why you would ever
care. First, we may establish the following

P = max
x

min
λ≥0

L(x, λ) = min
λ≥0

L(xP , λ) ≤ L(xP , λD) ≤ max
x

L(x, λD) = min
λ≥0

max
x

L(x, λ) = D

The result P ≤ D is known as weak duality, and P = D is strong duality. The conditions for
strong duality are, uh, strong, but simple to state. We just want a structure so that the competing
optimizers don’t care what order they play in. This solution (x∗, λ∗) then needs to be a saddle,
defined as

L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ)

Intuitively, at (x∗, λ∗), neither the minimizer nor the maximizer will want to take the solution
elsewhere.

Theorem 11.6. Suppose L has a saddle point. Then strong duality holds.

Problem 11.8. Prove the above theorem
Solution: Let (x∗, λ∗) be the saddle point.

D = min
λ≥0

max
x

L(x, λ) ≤ max
x

L(x, λ∗) = L(x∗, λ∗) = min
λ≥0

L(x∗, λ) ≤ max
x

min
λ≥0

L(x, λ) = P

Then P ≤ D (from earlier) and D ≤ P , so D = P .

Okay, so now we have like 2 or 3 ways to think about solving constrained optimization problems.
Why should you care? A few reasons:

(i) Sometimes it will be easier to approach the dual than the primal problem, but we want to be
sure that the solutions actually match. This may apply theoretically, or computationally (see
below).

(ii) Sometimes two problems of interest come to us in the form of the primal and dual, and we
can show they lead to the same outcome.

Example 11.3. Consider a consumer with a budget b for buying goods. Their problem may be
stated as

max
x

u(x)

such that c(x) ≤ b

The relevant Lagrangian is

L(x, λ) = u(x) + λ(b− c(x))

Suppose L satisfies strong duality. To tackle this problem computationally, we need to answer a
few questions
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1. Given any x, how hard is it to compute λ∗(x) for the minimizer?

2. Given any λ, how hard is it to compute x∗(λ) for the maximizer?

The comparison above will help us decided whether to use the primal or dual approach to solve
the problem. Suppose first that computing λ∗(x) is super easy, but x∗(λ) is super hard. Then the
primal problem is likely a better choice, because we may note

P = max
x

min
λ≥0

L(x, λ) = max
x

L(x, λ∗(x))

where the second equality is from strong duality. Then we can search over the space x lives in to
find x∗(λ), but we will only need to do this once, since along the way we will maintain λ∗(x), which
is easy to compute for any x we test.

Now instead consider that λ∗(x) is a real chore, but that x∗(λ) is piece of cake. Then dual is better
suited, since just search over the space λ lives in, maintaining x∗(λ) along the way.

D = min
λ≥0

max
x

L(x, λ) = min
λ≥0

L(x∗(λ), λ)

Problem 11.9. The following problem draws heavily from (Fajgelbaum and Schaal, 2020), a
beautiful paper.

Consider a world that consists of a network of locations, any of which may be linked or unlinked.
At each location Lj agents reside, and have utility for consumption U . There is also production
technology at each location that produces Fj goods. The interesting aspect is that we may ship
goods between location in the network, but as we ship goods, some goods are lost. In particular,
in order for 1 good to be directly shipped between connected locations k and l, τkl(Qkl, Ikl) goods
must be shipped, where the “iceberg cost” τ depends on the flows through the link, Qkl, and the
investment in the transport network on the link.

We consider the social planner that faces a finite budget κ to finance the investment over all links.
The planner also places Pareto weights ωj on the utility of the agents at each location (agents
cannot move). The planner problem is then

max
C,Q,I

∑
j

ωjLjU(Cj)

Fj +
∑
k

Qkj = Cj +
∑
l

Qjlτjl∑
k,l

δklIkl ≤ κ

The objective simply weights the utilities across locations. The second constraint is the flow
constraint, which says that the goods produced at any location, plus those shipped in, must equal
the goods consumed, plus those shipped out (if this did not hold, either there would be wasted goods
or more goods consumed than produced, so we rule these out immediately). The last constraint is
the budget of the planner.

74



Abram

We will tackle this problem slowly, and hopefully it will help emphasize the potential power of
duality.

(i) Suppose there are n locations. What are the dimensionalities of C,Q, and I?

Solution: C is an n-vector, and Q and I are n× n matrices.

(ii) How many Lagrange multipliers will we have?

Solution: One Lagrange multiplier for each location, plus one for the building constraint, so
n+ 1. Importantly, not on the order of n2, if n is large.

(iii) Set up the Lagrangian. Use Pj for the multiplier on flow constraint j and Pκ for the budget
constraint.

Solution:

L(·, P ) =
∑
j

ωjLjU(Cj) +
∑
j

Pj

[
Fj +

∑
k

Qkj − Cj +
∑
l

Qjlτjl(Qjl, Ijl)

]
+ Pκ[κ−

∑
k,l

δklIkl]

(iv) Find the FONCs.

Solution:

Cj : ωjLjU
′(Cj) = Pj

Qkl : Pl = Pk(τkl +Qkl
∂τkl
∂Qkl

)

Ikl : PkQkl
∂τkl
∂Ikl

= Pκδkl

(v) Specialize to

τkl(Qkl, Ikl) = 1 + tkl
Qβ

kl

Iγkl
U(Cj) = Cα

j

Solve for Cj and Qkl as functions of the Pj and Ikl. (Note: Qkl must not be negative)

Solution:

ωjLjαC
α−1
j = Pj

⇒ Cj =

(
αωjLj

Pj

) 1
1−α

Pl = Pk

(
1 + tklQ

β
klI

−γ
kl + βtklQ

β
klI

−γ
kl

)
⇒ Qkl =

[
Iγkl

tkl(1 + β)
max

{
Pl

Pk
− 1, 0

}] 1
β

The max{·, 0} maintains the non-negativity of the flows.
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(vi) Solve for Ikl as a function of the Pj , Qkl and Pκ.

Solution:

PkγtklQ
1+β
kl I−γ−1

kl = Pκδkl

⇒ Ikl =

[
PkγtklQ

1+β
kl

Pκδkl

] 1
1+γ

(vii) Solve for Ikl as a function of the Pj and Pκ alone.

Solution:

Ikl =

[
Pkγtkl
Pκδkl

(
1

tkl(1 + β)
max

{
Pl

Pk
− 1, 0

}) 1+β
β

] β
β−γ

(viii) In the language from above, is it easier to find x∗(λ), or λ∗(x)?

Solution: It was much easier to find the real quantities x = C,Q, I as a function of the
Lagrange multipliers λ = P than vice versa. Therefore it is likely easier to solve the problem
using the dual formulation than the primal form.

(ix) Suggest a way to search for an equilibrium, given that you have a computer which can solve
a non-linear system of equations.

Solution: Plug in the real quantities as functions of the prices (Lagrange multipliers), and
search for the vector of prices that satisfy the FONCs (which will now purely be in terms of
the prices). This system is well-behaved enough your computer won’t even find it that hard,
usually, even for moderately large n.

Also, to be clear, in your career, you do have access to a computer which solve non-linear
systems of equations. Investing energy now into learning how to make the computer better
at solving systems of interest may pay off big later.

(x) I skirted past the details of actually checking that strong duality holds, but it does for the
given functional forms. But notice something odd: For any given link, holding Qkl fixed,
there are increasing returns to investment Ikl. So it should be the case that the problem is
not properly concave, right? Explain what force mitigate the increasing returns to invest-
ment, mathematically and economically. Can you conjecture a condition on the underlying
parameters that will make strong duality hold?

Solution: There are increasing returns to investment, but decreasing returns to flows, so
more flows lead to more congestion, as can be most clearly seen in the τkl functional form.
In some sense, we need forces which spread things out (dispersion) to dominate forces which
push things together (agglomeration). In this problem the condition ends up simply being
β > γ. If this does not hold, then the planner may have a multiplicity of solutions which
each involve investing a lot in some links and sending a lot of traffic through them. With the
congestion force strong enough, there is a unique solution.

12 Conclusion

Now you should be all ready for your first year. Based on my recollection of the math required
for the first-year courses, we (including the other instructor’s concurrent material) have covered
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basically all the math ideas you will need to be familiar with to do the first year. To proactively
address some questions:

• Are you saying all the math needed for the first year is contained in the math
camp notes?

No. First, I err, and therefore I am sure I have missed ideas, or at least not covered them as
thoroughly as needed for the whole Core. Second, some math will be learned in the courses as
you go, and we have omitted some of those parts. The hope is that we have given/reviewed
the foundation so that the new stuff can be learned more easily.

• Will we use all the math in these notes in the first year?

Nope. I never saw Fréchet or Gateaux mentioned, and in fact the majority of the functional
generalizations were (intentional) overkill. I have no doubt that some parts of these notes
were needless generalization, but my goal was to help clarify or re-frame thinking on the
topics, so hopefully even the non-applications stretched your brain in a good way.

• Returning to a topic in these notes later, I found something unclear, or maybe
even wrong...?

Oh dang. Please let me know so I can look into it and fix it!

Have a great first year! I’ll be around and I try to be friendly, so don’t be a stranger!

(If you stumbled onto these notes and you were not a member of the Autumn 2022 classes taking
Econ Math Camp at the University of Chicago, I hope the notes were helpful. If not... well at least
you got them for free and therefore free disposal applies.)
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These appendices are additional topics or applications that are outside of what I considered to be
the necessary math for the Core. However, my hope is that these extensions increase your ability
to problem-solve and see the economics.

A Substitution and Income Effects

We start here with a classic problem, but one which was maybe only graphically discussed in pre-
vious courses. We start by reviewing the graphical explanations, then actually check the math.

Setup: An agent has income y, utility function u(c1, c2) = α ln c1 + (1− α) ln c2, and faces a price
of 1 for c1, and a price of p2 for c2.

(1) Sketching

(i) Draw the budget constraint (call in B1) in (c1, c2) space, and sketch the indifference curve
intersecting the optimal choice.

(ii) Sketch the effect of a decrease in p2 (say to p̂2) on the budget constraint (call it B2), and
sketch the new curve which intersects the optimal choice.

(iii) Hicksian

(a) Sketch the budget curve which has a slope equal to that of B2, but is tangent to the
optimal indifference curve under B1. Call it BH .

(b) (SE) On the axes, show the effect on the optimal goods choice of moving from B1 to
BH .

(c) (IE) On the axes, show the effect on the optimal goods choice of moving from BH to
B2.

(iv) Slutsky (You may want to do this on a different diagram than the Hicksian one, just for
organization)

(a) Sketch the budget constraint which has slope equal to that of B2, but intersects the
optimal choice under B1. Call it BS .

(b) (SE) On the axes, show the effect on the optimal goods choice of moving from B1 to
BS .

(c) (IE) On the axes, show the effect on the optimal goods choice of moving from BS to
B2.

(2) Math

(i) Find the optimal choice under B1.

Solution: The Lagrangian

L = α ln c1 + (1− α) ln c2 + λ[y − c1 − p2c2]

FONCs

α

c1
= λ

1− α

c2
= p2λ
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Solve it out:

λ =
α

c1
=

1− α

p2c2

⇒ c2 =
1− α

α

1

p2
c1

⇒ y = c1 + p2c2

= c1 +
1− α

α
c1

=
c1
α

⇒ c1 = αy

c2 =
(1− α)y

p2

(ii) Find the optimal choice under B2.

Solution: The solution is the same, we just use p̂2

c1 = αy

c2 =
(1− α)y

p̂2

(iii) Hicksian

(a) Find the optimal goods choice under BH

Solution: BH is the budget curve with slope 1
p̂2

that is tangent to the indifference
curve of the optimal choice under B1. The (implicit) equation for that indifference
curve is

α ln c1 + (1− α) ln c2 = α ln(αy) + (1− α) ln(
(1− α)y

p2
)

This curve can be reformulated in (c1, c2) space as

c2 = (αy)
α

1−α

(
(1− α)y

p2

)
c
− α

1−α

1

Now we want to know where the slope of this curve is − 1
p̂2
. The slope of the indiffer-

ence curve, as a function of c1, is

∂c2
∂c1

= −(αy)
1

1−α
1

p2
c
− 1

1−α

1

So we solve for the (c1, c2) needed
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− 1

p̂2
= −(αy)

1
1−α

1

p2
c
− 1

1−α

1

⇒ c1 =

(
p̂2
p2

)1−α

αy

c2 =

(
p̂2
p2

)−α (1− α)y

p2

(b) Calculate the substitution effect (the change in goods choice when moving from B1

to BH).
Solution: We just do the subtraction

∆c1 =

(
p̂2
p2

)1−α

αy − αy

=

((
p̂2
p2

)1−α

− 1

)
αy

∆c2 =

(
p̂2
p2

)−α (1− α)y

p2
− (1− α)y

p2

=

((
p̂2
p2

)−α

− 1

)
(1− α)y

p2

(c) Calculate the income effect (the change in goods choice when moving from BH to B2)
Solution: Similar to above

∆c1 = αy −
(
p̂2
p2

)1−α

αy

=

(
1−

(
p̂2
p2

)1−α
)
αy

∆c2 =
(1− α)y

p̂2
−
(
p̂2
p2

)−α (1− α)y

p2

=

(
p2
p̂2

−
(
p2
p̂2

)α) (1− α)y

p2

(iv) Slutsky

(a) Find the optimal goods choice under BS

Solution: BS is the budget curve with slope − 1
p̂2

that intersects the optimal bundle
under B1. We can find the (c1, c2) representation in point-slope form

(c2 −
(1− α)y

p2
) = − 1

p̂2
(c1 − αy)

Rearrange to see have the adjusted income on the left, and spending on the right
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αy +
p̂2
p2

(1− α)y = c1 + p̂2c2

With this budget, we can use our original solution, replacing y with the left side (and
p2 with p̂2):

c1 = α

(
αy +

p̂2
p2

(1− α)y

)
c2 =

(1− α)

p̂2

(
αy +

p̂2
p2

(1− α)y

)
(b) Calculate the substitution effect (the change in goods choice when moving from B1

to BS).
Solution: Again, basic subtraction

∆c1 = α

(
αy +

p̂2
p2

(1− α)y

)
− αy

= α(1− α)

(
p̂2
p2

− 1

)
y

∆c2 =
(1− α)

p̂2

(
αy +

p̂2
p2

(1− α)y

)
− (1− α)y

p2

= α
(1− α)

p2

(
p2
p̂2

− 1

)
y

(c) Calculate the income effect (the change in goods choice when moving from BS to B2)
Solution:

∆c1 = αy − α

(
αy +

p̂2
p2

(1− α)y

)
= α(1− α)

(
1− p̂2

p2

)
y

∆c2 = (1− α)
(1− α)

p2

(
p2
p̂2

− 1

)
y

(3) Basic Analysis

(i) Compare the substitution and income effects of the Hicksian and Slutsky decompositions

Solution: No hard and fast answer to this one. The total effects are the same, and
the convexity of the indifference curves means that, under the Hicksian decomp, the
substitution effect leads to a lower consumption of the good with the price increase, but
then the income effect is not as large. With the Slutsky decomp, the substitution effect
does not decrease c2 as much or increase c1 as much as in the Hicksian decomp, but the
income effect is larger.

(ii) What is the income elasticity of both goods?
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Solution: Log the terms and then use that the elasticity may be written in terms of logs:
dc
c
dy
y

= d ln c
d ln y = ϵc,y

ln c1 = lnα+ ln y

⇒ ϵc1,y =
d ln c1
d ln y

= 1

ln c2 = ln(1− α) + ln y − ln p2

⇒ ϵc2,y = 1

(iii) What is the price elasticity of demand for good i with respect to price j (i, j ∈ {1, 2})?
Solution: We have been using c1 as the numeraire, so p1 = 1, but now it will be more
clear to explicitly write it in. Recall the price elasticity of demand for good i with respect
to price j is ϵci,pj =

d ln ci
d ln pj

.

ln c1 = lnα+ ln y − ln p1

⇒ ϵc1,p1 = −1

ϵc1,p2 = 0

ϵc2,p1 = 0

ϵc2,p2 = −1

(iv) Are the goods substitutes or complements? Answer in terms of both net and gross sub-
stitutability.

Solution: Recall the net substitutability refers to changes in one good’s consumption
when the other price changes, only considering the substution effect, whereas gross sub-
stitutability accounts also for the income, so the total effect.

The goods are net substitutes, because the substitution effect is to substitute towards
the goods with the comparatively lower price. The goods are not gross substitutes or
complements, however, because the total effect of a price increase for one good is no
change in the consumption of the other good. The reason is that the optimal choice is to
spend a constant share of income on each good, so increasing the price of either good just
reduces the amount of that good consumed, since expenditure on it remains constant,
and does nothing to the amount of the other good.

(v) Evaluate the following statement: “The Hicksian decomposition shows the true substitu-
tion effect, whereas the Slutsky decompsition cheats by changing the choice set”.

Solution: Basically true. The Hicksian decomp is “true” in that we compensate the
agent to the point where they can attain the same utility as under the original bundle.
Slutsky compensates to make the original bundle, which means that at the optimal choice
on along that curve utility is higher than under the original bundle.

(vi) Which decomposition seems empirically easier to work with?

Solution: Slutsky. We can’t observe indifference curves, but we can observe prices
and quantities, so revealed preference arguments often have a Slutsky decomp in the
background.
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(vii) Classify the goods as normal, inferior, or Giffen inferior.

Solution: The income effect for both is positive, so they are normal. Recall that if the
income effect were negative for either, then that good would be some form of inferior, and
if it were so negative that the consumption decreased for the good after price decrease
(IE < 0, |SE| < |IE|), then the good would be Giffen inferior.

(4) Policy Analysis: Reinterpret the decrease in p2 as a subsidy to purchasing c2

(a) If c2 is a “green” good and your platform is environmentally focused was this a good
policy?

Solution: Yes, c2 increased.

(b) If c2 is green, would taxing c2 be better?

Solution: No, that would push in the wrong direction.

(c) If c1 is a “green” good and your platform is environmentally focused was this a good
policy?

Solution: No, consumption of c1 is unchanged.

(d) If c1 is green, would taxing c2 be better?

Solution: Again, no, because c1 is unaffected.

(e) What can you conclude about the efficacy of policies that only allowing taxing/subsidizing
one good?

Solution: For these preferences, policies that only tax/subsidize ci can only effect ci, not
cj for j ̸= i.

(f) Consider if the government runs a balanced budget, so that the tax/subsidy is offset by a
lump-sum transfer/tax T .

i. What will be the goods choice made under this policy?
Solution: The budget curve is now

c1 + p2(1 + τ)c2 = y + T

So the optimal choices are

c1 = α(y + T )

c2 =
(1− α)(y + T )

p2(1 + τ)

Balanced budget requires

T = p2τc2

So we find

c1 = α(1 + (1− α)
τ

1 + ατ
)y

c2 =
(1− α)y

p2(1 + ατ)
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ii. Will utility be higher or lower at this point than on the original choice under B1?
Solution: Plugging in values and substracting utilities, the utility gain from the
tax-and-transfer scheme is

α ln

(
1 + (1− α)

τ

1 + ατ

)
− (1− α) ln(1 + ατ)

This value is always ≤ 0, so utility is lower if |τ | ≠ 0. One way to verify this is to note
that for τ < 0, the derivative of the above expression with respect to τ is positive,
and for τ > 0 it is negative, and at τ = 0 the expression is 0.

iii. What can you conclude about a social planner’s ability to correct “inefficiencies” in
this context?
Solution: This scheme only makes things worse. The reason is that τ is an arbitrary
“twisting” of the relative prices, but then T is used to offset the expense of funding
this change, given how the agent chooses to consume at the new price. The key is
that the agent takes ϕ2(1 + τ) and T as given, and they cannot choose to consume
a different quantity with the intention of increasing T , for example. So when the
effective price of c2 decreases, they substitute towards it, but in equilibrium this leads
to less compensation via T than if they were to choose a lower quantity of T . I found
this result interesting/suprising!

(5) Check: What theorems or ideas did we use to analyze this problem?

(6) Challenge: How do the above answers change if we move away from utility having a log speci-
fication? What was the log assumption imposing on preferences?
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B CES Magic

This section inspired by these notes (but no peeking until you work through the following problem
yourself!), which contain references to papers that originate some of these ideas.

The problem that faces us is that it is not immediately obvious how to formulate a demand system
(or market more generally) for many firms, but also maintain tractability. The Cournot example
from earlier seems like an obvious candidate, but the “frictions” in that case come from strategic
interaction among firms; the products themselves remain identical, and there is one price. We
would like a setup where each firm can charge a different price, and lose some, but not all, of their
market share. The following is the standard way of accomplishing this task, and indeed almost any
modern paper using a New Keynesian model probably has this structure hidden somewhere in the
model31.

Consumer preferences drive basically all the results we will find. The budget constraint is standard,
except that now we have a continuum of goods, each possibly with its own price, and we let I stand
for household income, which is comprised of labor income and lump-sum profits.

U ≡ Q =

(∫ 1

0
q(ω)

σ−1
σ dω

) σ
σ−1

(Preferences)

LW +Π = I =

∫ 1

0
p(ω)q(ω)dω (Budget)

(i) Set up the constrained optimization problem. How many choice variables are there? How
many constraints?

Solution: The Lagrangian is

L = U + λ[I − PQ]

=

(∫ 1

0
q(ω)

σ−1
σ dω

) σ
σ−1

+ λ

[
I −

∫ 1

0
p(ω)q(ω)dω

]
There is a continuum of choices (q) and a single budget constraint.

(ii) Take the first order conditions.32 (Hint: Ignore the LW + Π part, and just use the I term.
The LW +Π will be relevant later.)

Solution:

σ

σ − 1
Q

1
σ
σ − 1

σ
q(ω)−

1
σ = λp(ω)

⇒ λp(ω) =

(
q(ω)

Q

)− 1
σ

31We may soon see it arising less on the goods side and more from a “labor union” channel in newer models.
32You may protest that attacking this problem with a Lagrangian is sloppy, since we need to consider measure-

theoretic concerns. I’m sympathetic, but for now rest-assured that a naive attack will work for us.
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(iii) Rewrite the q(ω) FOC so that it only depends on p(ω), q(ω), Q, and λ. This will involve
noting that an integral in your original FOC can be written as Q to some power.

Solution: Already did it above, oops.

(iv) Write the demand relationship between two arbitrary ω and ω′. This should be in the form
q(ω) = . . ., where the right side depends on p(ω), p(ω′), and q(ω′).

Solution:

λ =
1

p(ω)

(
q(ω)

Q

)− 1
σ

⇒ 1

p(ω)

(
q(ω)

Q

)− 1
σ

=
1

p(ω′)

(
q(ω′)

Q

)− 1
σ

⇒ q(ω) =

(
p(ω)

p(ω′)

)−σ

q(ω′)

(v) Multiply both sides by p(ω), and integrate over ω. You should be left with an expression such
that the left side is equal to I (from the budget constraint), and the right side depends on
p(ω′), q(ω′), and some integral over prices.

Solution:

∫
p(ω)q(ω)dω =

∫
p(ω)1−σp(ω′)σq(ω′)dω

I = p(ω′)σq(ω′)

∫
p(ω)1−σdω

(vi) Rearrange so that you have q(ω′) in terms of I, p(ω′), and a price index P ≡
(∫

p(ω)1−σdω
) 1

1−σ .

Solution:

q(ω′) =

(
p(ω′)

P

)−σ I

P

(vii) Calculate the price elasticity of demand between any good and price (ϵω,ω′ ≡ d ln q(ω)
d ln p(ω′) =

dq(ω)
dp(ω′)

p(ω′)
q(ω) ):

Solution: Note that the effect of p(ω) on P is zero because each ω has measure zero.

ln q(ω) = −σ ln p(ω) + (σ − 1)σ lnP + ln I

⇒ ϵω,ω′ = −σ1{ω = ω′}

(viii) As σ → ∞, what is the economic interpretation, and what happens to the demand system?

Solution: Demand for each ω becomes perfectly elastic, so the consumer simply uses their
entire income on the lowest price good.
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(ix) As σ → 1, what is the economic interpretation, and what happens to the demand system?

Solution: Goods become less substitutable, so consumers are less sensitive to price changes.

(x) If σ < 1, what is the economic issue that breaks things?

Solution: Economically, the goods become complements, but this makes the U integral po-
tentially not well-defined. In some sense, the substitutabilty of goods is what keeps everything
“stable and nice”. When σ < 1, the preferences aren’t as clear to even interpret, let alone
make sense mathematically.

(xi) Suppose all firms’ have production function q(ω) = L(ω), where L(ω) is labor hired, and the
wage is W .

(a) What is firm ω’s profit function and maximization problem?

Solution: The function is

π(ω) = p(ω)q(ω)−WL(ω)

= p(ω)1−σP σ−1I −Wp(ω)−σP σ−1I

The max problem is then

max
p(ω)

p(ω)1−σP σ−1I −Wp(ω)−σP σ−1I

(b) What is the optimal price (in terms of W )?

Solution: Drop the constant terms to simplify max problem

max
p(ω)

p(ω)1−σ −Wp(ω)−σ

FONCs

0 = (1− σ)p(ω)−σ +Wσp(w)−σ−1

Then

p(ω) =
σ

σ − 1
W

(c) What is the optimal quantity for ω (in terms of W,P, I)?

Solution:

q(ω) = p(ω)−σP σ−1I

=

(
σ

σ − 1

)−σ (W

P

)−σ I

P
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(d) What are the profits per unit?

Solution:

π(ω)

q(ω)
=

p(ω)q(ω)−Wq(ω)

q(ω)

= p(ω)−W

=
σ

σ − 1
W −W

=
1

σ − 1
W

(e) Suppose that all ω′ ̸= ω are already producing their optimal quantities. What is the
optimal quantity (in terms of L, W , Π)?

Solution: Use that all others playing optimally means P = σ
σ−1W

q(ω) =

(
σ

σ − 1

)−σ (W

P

)−σ WL+Π

P

=
σ − 1

σ

WL+Π

W

(f) What happens to profits as σ → ∞?

Solution: Profits are

π(ω) =
π(ω)

q(ω)
q(ω)

=
1

σ − 1
W

σ − 1

σ

WL+Π

W

=
1

σ
(WL+Π)

Use that
∫
π(ω)dω = Π, and π(ω) = π(ω′), so π(ω) = Π, so

Π =
1

σ
(WL+Π)

⇒ Π =
1

σ − 1
WL

So limσ→∞Π = 0.

(xii) What happens to the results if we change the exogenous level of labor, L, available? What
happens to the results if we change the wage level, W?

Solution: The basic point I want to make here is that changing L has real effects, because
we are increasing real inputs to production, whereas changing W does not.

First, consider output:
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Q =
σ − 1

σ

WL+Π

W

=
σ − 1

σ

WL+ 1
σ−1WL

W
= L

Obviously, a more direct route is just Q = (
∫
q(ω)

σ−1
σ dω)

σ
σ−1 = (

∫
L(ω)

σ−1
σ dω)

σ
σ−1 = L. So

output levels don’t depend on W . Similarly, consider real income

WL+Π

P
=

WL+ 1
σ−1WL

σ
σ−1W

= L

This should be unsurprising: real income equals real output, straight from classic Y = C +
I +G+NX, with most terms being zero.

(xiii) Do you think this is a good way to model monopolistic competition, and generate profits?
What are the advantages and disadvantages?

Solution: Maybe? It is certainly treated like a good model, since just about every macro
paper with a NK model uses it, as well as many trade models, and that’s just from stuff I’ve
read.

The profits are a bit mechanical, which give some tractability, but perhaps having every good
receive an identical profit from a simple markup is not realistic. The key advantage is clearly
the tractability: we were able to basically fully solve this model by hand and we could do
further comparative statics without ever touching a computer. But this means the model is
necessarily simple, so perhaps missing realistic elements of whatever our market of interest
is. However, to be totally fair, the fact that the model is so simple means it is easy to build
from, and indeed that is why it is so popular: you can mod the heck out of it to get models
with new elements.

(xiv) The difference between the goods price and wage is often referred to as a “wedge”, because it
is inefficient, in some sense. What tax/subsidy policy would entirely neutralize the wedge?

Solution: The wedge is that prices are marked up by a factor of σ
σ−1 . A subsidy to producers

of factor σ
σ−1 would cause them to produce at the quantity where prices equal wages.

(xv) Does the policy improve welfare? Does it matter how you finance it?

Solution: If the funding comes from outside of the model, then yeah it improves welfare: we
just injected extra real value for free! Of course, the subsidy must be funded somehow, in
which case there will be no real value added, so U = Q = L will still hold. If we fund by a
labor tax, then the wedge is functionally restored, we have just relabelled some prices. If we
fund by a lump-sum tax, then the tax will exactly offset the profit increase, again leaving the
same real income.
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C Firm Size and Supply Structure

Many (most?) economic models model production as something bare bones simple, such as
Y = KαL1−α. Why do we do this? The obvious answer is mathematical simplification, but
that answer is not particularly satisfying, especially when we consider how far we have evolved in
terms of modeling the demand side33, so why has the supply side not progressed similarly?

Of course I am being somewhat facetious, and the answer is that it has progressed, but in fact
this is really only true for the past decade or so. Let’s dive into a few influential papers to see the
progression. We first deal with the question of firm size and “washing out” of shocks, then move to
the structure of the supply-side of the economy. In all cases, I am simplifying the original results.

(1) Lucas (allegedly): This part of the problem is concerned with the idea that idiosyncratic shocks
get “washed out” due to a law of large numbers argument. It is generally attributed to Lucas,
though it is unclear whether he ever actually put forward this idea (or believed it), or if someone
else’s interpretation of one of his papers led to this idea.

Suppose there are N firms in the economy, where firm i produces Si,t in year t. Firms receive
idiosyncratic shocks such that their individual growth rate is

Si,t+1 − Si,t

Si,t
=

∆Si,t+1

Si,t
= σiϵi,t+1

ϵi,t+1 ∼ N(0, 1)

(a) What is the mean growth rate for firm i? What is the standard deviation for firm i (these
are easy, just checking that you understand the setup)?

Solution:

E[
∆Si,t+1

Si,t
] = E[σiϵi,t+1]

= 0√
V[

∆Si,t+1

Si,t
] =

√
V[σiϵi,t+1]

= σi

(b) Define the aggregate output as Yt ≡
∑n

i=1 Si,t. What is the aggregate growth rate?
Express it in terms of the σi, Si,t, Yt, and ϵi,t+1.

Solution:

Yt+1 − Yt
Yt

=

∑
Si,t+1 − Si,t

Yt

=
∑ Si,t

Yt

∆Si,t+1

Si, t

=
∑ Si,t

Yt
σiϵi,t+1

33Just Google “heterogeneous agents” or “non-homethetic preferences” to get a slew of results.
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(c) What is the mean aggregate growth rate? What is the standard deviation (call it σY )?

Solution:

E[
∆Yt+1

Yt
] = E[

∑ Si,t

Yt
σiϵi,t+1]

= 0

σY =

√
V[
∑ Si,t

Yt
σiϵi,t+1]

=

√∑ S2
i,t

Y 2
t

σ2
i

(d) Assume σi ≡ σ is constant across i, and
Si,0

Y0
= 1

N . What is σY , for growth from time 0 to
1?

Solution: Plug in

σY =

√∑ 1

N2
σ2

=
σ√
N

(e) What is the economic interpretation of the assumptions in the previous part?

Solution: All firms are equal-sized and have equally volatile production.

(f) One (outdated but whatever) estimate of the number of firms in the U.S. is just shy of 6
million. In this model, should the U.S. have business cycles? Why?

Solution: No way, unless you think σ is huge, because the
√
6M denominator would

massively mute any aggregate fluctuations.

(g) If your above answer does not match what we empirically observe, can you identify what
assumption(s) might be causing the issue(s)?

Solution: Firms are not all equally sized is probably the biggest offender, second to the
fact that σ may be endogenous to firm size. Also, the iid is pretty crazy of an assumption,
especially if we want to think about business cycles.

(2) (Gabaix, 2011) puts forward the idea that the above “washing out” argument hinges critically
on an implicit assumption that the firm size distribution is sufficiently thin-tailed. Consider

the same setup as above, except now
Si,0

Y0
=

1− 1
N

1−( 1
N
)N+1

1
N i . I am not even sure if this follows

Gabaix’s power law argument exactly, but it is close, and works to see the economics.

(a) Find σY .

Solution: The exact expression is

σ2
Y =

N∑
i=1

(
N − 1

N
)2(

NN+1

NN+1 − 1
)2

1

N2i
σ2

= (
N − 1

N
)2(

NN+1

NN+1 − 1
)2
1− ( 1

N2 )
N+1

1− 1
N2

σ2
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Therefore

lim
N→∞

σ2
Y = σ2

(b) Can the U.S. have business cycles now?

Solution: Yeah because now the shocks don’t wash out with large N .

(c) What was the crucial change (economically) that led to this result? For concreteness,
consider an economy with only chains of Walmarts and McDonald’s, and all other firms
are local shops. What would we need to assume about the firm shocks in each case, and
which setup is more plausible?

Solution: The crucial change is that firms with lower i are relatively bigger, so contribute
more to the aggregate fluctuations. In the Walmart and McD case, those two firms are
large enough that shocks hitting them will affect the economy much more than if we
pretended that being bigger means less fluctuations, which may not be plausible.

(d) Consider if σi are again heterogeneous. How do you expect σY to relate to σi, in the above
case and this case?

Solution: In the above case, they will still wash out provided σn is not increasing too
fast with n. In this case, the lower i will contribute more to σY than the higher i, because
the size of the lower i firms are bigger.

(e) What do you conclude about how aggregate fluctuations depend on the firm size distri-
bution (this is the “granular origins” hypothesis)?

Solution: If the firm size distribution is sufficiently fat-tailed, then aggregate fluctua-
tions do not wash out. This is because some firms are granular, hence the name of the
hypothesis.

(3) (Hulten, 1978) is a paper that answered the queries up top with a flavor of “it doesn’t matter”.
Arguably, the influence of this paper led to widespread ignorance of the problem, not because
it was boring or hard (or unimportant), but because we believed that the “big questions” were
not affected by the supply structure.

Let F (Y (t), J(t), t) = 0 denote the production possibilities set, where J(t) a set of inputs (m-
dimensional) and Y (t) is a set of outputs (n-dimensional). For example, in the above appendix,
F (Y (t), J(t), t) = FCES(Y,L, t) = Y − L.

(a) Assume F is homogeneous of degree zero in (Y, J). What does this imply aboutD(Y,J)F (Y, J, t)◦
(Y, J), for any Y ?

Solution: Recall Euler’s theorem from way above to conclude

D(Y,J)F (Y, J, t) ◦ (Y, J) = 0 · F (Y, J, t) = 0

Therefore, when we expand the terms

∑ ∂F

∂Yi
Yi +

∑ ∂F

∂Jj
Jj = 0
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(b) (First-Order) Take the derivative of F (Y (t), J(t), t) with respect to time, and set it equal
to 0, since F = 0 always. (Note that you will need to account for t’s effect on Y and J ,
as well as the direct partial derivative of F with respect to t).

Solution:

∂F

∂t
+
∑ ∂F

∂Yi
Ẏi +

∑ ∂F

∂Jj
J̇j = 0

(c) Divide the answer from the second part of this question by the answer from the first part
(in a neat way) so that the new expression can be understood as a sum of weighted sums
and ∂F

∂t ≡ Ḟ

Solution: The “neat” denominator is

∑ ∂F

∂Yi
Yi = −

∑ ∂F

∂Jj
Jj

So we can divide

Ḟ∑ ∂F
∂Yi

Yi
+
∑ ∂F

∂Yi
Ẏi∑ ∂F

∂Yi
Yi

−
∑ ∂F

∂Jj
J̇j∑ ∂F

∂Jj
Jj

= 0

Rearranging

− Ḟ∑ ∂F
∂Yi

Yi
=
∑ ∂F

∂Yi
Yi∑ ∂F

∂Yi
Yi

Ẏi
Yi

−
∑ ∂F

∂Jj
Jj∑ ∂F

∂Jj
Jj

J̇j
Jj

(d) (No Wedges) Define

pi ≡ −
∂F
∂Yi

∂F
∂Y1

wj ≡
∂F
∂Jj
∂F
∂Y1

Rewrite your previous expression using these terms, so that you have an expression for

T ≡ Ḟ∑ ∂F
∂Yi

Yi

Solution:

T =
∑ piYi∑

pkYk

Ẏi
Yi

−
∑ wjJj∑

wkJk

J̇j
Jj

(e) What can we say about what is needed to measure TFP, empirically?

Solution: We just need expenditure shares and growth rates for each industry. So this
paper is pretty neat because the theory was general and led to a simple empirical conclu-
sion.
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(f) Consider the following statement: “The supply chain in the U.S. is too interconnected,
and it is hurting TFP. If we could get industries less connected, while preserving the
same output and input shares, TFP would grow much more quickly.” Is this statement
supported or refuted by this model?

Solution: I would say refuted. This model doesn’t have a notion of connectedness (di-
rectly, at least), and instead reveals sufficient statistics for TFP growth. If those sufficient
statistics are unchanged, the other background mechanics don’t matter.

(g) What potential issues can you see by always assuming what was needed to get this result?

Solution: The results only hold to first order, so if you have an economy/network where
second-order concerns are actually quantitatively important, then they need to be incor-
porated for any large enough deviation. Additionally, it is important that there are no
wedges/inefficiencies in the markets. If there are, then the expressions must be amended
to account for them, and of course measuring wedges is much harder than measuring
industry expenditures or output.

(4) (Acemoglu et al., 2012) approaches the issue slightly differently from (Gabaix, 2011), and in-
stead assumes that the “size” differences are due to the network structure of production. This
provides a sense of microfoundations for the size result, and allows firm interactions to mat-
ter for shock propagation (this is the “network origins” hypothesis). Though this paper was
certainly not the first to take the production network structure seriously34, it is probably the
paper that kicked off the current production networks literature (one lesson here might be
that writing a paper really clearly and cleanly can have dividends). Also see (Carvalho and
Tahbaz-Salehi, 2019) for excellent exposition (and if you get stuck on this problem).

Households are endowed with one unit of labor, and preferences are

u(c) =
n∑

i=1

βi ln(ci)

The production structure can be summarized by

xi = Aziℓ
α
i

n∏
j=1

x
wij

ij

where xij is the amount of output j used in production of output i. We assume
∑n

j=1wij =

(1−α) (wij ≥ 0)35 and
∑n

i=1 βi = 1, so production is CRS, and preferences are homogeneous of
degree 1. The material constraints are that total labor is unitary, and the sum of consumption
goods and intermediate inputs from i must equal output from i:

34The first might have been Leontief himself!
35This will imply that the spectral radius of W is within the unit circle.
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1 =

n∑
i=1

ℓi

xi =

n∑
j=1

xji + ci

(a) Solve the household’s problem, given prices pi and wage h. (This should be starting to
feel more natural and familiar.)

Solution:

max
ci

n∑
i=1

βi ln(ci)∑
pici = h

Set up the Lagrangian

L =

n∑
i=1

βi ln(ci) + λ[h−
∑

pici]

FONCs

βi
ci

= λpi

⇒ βi
pici

=
βj
pjcj

Solve out for ci using budget to find

ci =
βih

pi

(b) What are the first-order conditions for the firms, given prices pi and wage h?

Solution: The firm chooses inputs to maximize profits

max
xij

pixi −
∑

pjxij − hℓi = max
xij

piAziℓ
α
i

∏
x
wij

ij −
∑

pjxij − hℓi

Then the FONCs are

αpixi
ℓi

= h

wijpixi
xij

= pj
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So

ℓi =
αpixi
h

xij =
wijpixi

pj

(c) Take logs of the production function, and plug in your FOCs from the firm. Once you
simplify (a lot) you should find an affine matrix equation in the vector p̂ = ln(pih ). You can
choose A to be whatever you want, in particular you may choose it to help with cancelling
some constants, and you will want to use the notation ϵi ≡ log(zi). (This will be hard,
but give it a try!)

Solution: Log the production function

lnxi = lnA+ ln zi + α ln ℓi +
∑

wij lnxij

= ϵi + α ln(
pi
h
) + α lnxi +

∑
wij(ln(

pi
h
)− ln(

pj
h
) + lnxi)

(Use A to cancel constants)

0 = ϵi + ln(
pi
h
)−

∑
wij ln(

pj
h
)

Letting W be the matrix with (i, j) entry wij , then we have

p̂ = −ϵ+Wp̂

Therefore

p̂ = −(I −W )−1ϵ

(d) Multiply the material constraint for xi by pi, then plug in the FOCs from the firm and
household. Divide by h.

Solution:

pixi = pici +
∑

pixji

= pi
βih

pi
+
∑

pi
wjipjxj

pi

= βih+
∑

wjipjxj
pixi
h

= βi +
∑

wji
pjxj
h

(e) You should now have a matrix expression in terms of λi =
pixi

h . Solve it. Can you interpret
this?

Solution:
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λ = β +W ′λ

⇒ λ = (I −W ′)−1β

The expenditure shares of each sector depend on the expenditure shares of other sectors,
and the way they depend is through a constant plus a linear combination, where the
coefficients are how intensely each sector is used in production. The solution is then the
fixed point of this system.

(f) Combine the matrix expressions to get a solution for ln(xi). Your answer should be in the
form of a matrix times the ϵ, plus a constant vector.

Solution: The ln is a bit sloppy, because it is really a component-wise log, not a matrix
log.

ln(xi) = ln(
pixi
h

)− ln(
pi
h
)

= ln
(
[(I −W ′)−1β]i

)
+ [(I −W )−1ϵ]i

(g) Return to the pricing equation from part (c), and rearrange so that log(h) is the inner
product (dot product) of two vectors, one being ϵ (You will need to choose the numeraire
cleverly to do some cancelling).

Solution: Start with term.

ln(
pi
h
) = −(I −W )−1ϵ

Rearrange to get lnh on one side

lnh = ln pi + [(I −W )−1ϵ]i

Multiply by βi and sum over i to still have lnh on the left

lnh =
∑

βi ln pi + β′(I −W )−1ϵ

Now we choose the numeraire to be such that the first term on the right above is zero,
and we are done, since we recognize λ has appeared.

lnh = λ′ϵ

For the remainder of the question, assume βi =
1
n .

(h) Consider W such that every entry is 1−α
n .

i. How does a shock from an arbitrary firm’s zi affect the other firms?
Solution: Every firm is hit hardest by their own shocks, but all other shocks affect
evenly, since everyone sources from all.
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ii. Can you explain what this network is, economically?
Solution: All firms need the same share from all firms to produce.

(i) Consider W such that wi,1 = 1− α for all i.

i. How does a shock from an arbitrary firm’s zi affect the other firms? (Explain the
propagation mechanism)
Solution: Shocks are hardest for all firms when they hit firm 1, since all source from
firm 1.

ii. Can you explain what this network is, economically?
Solution: Everyone sources from firm 1 only (except for labor), even firm 1.

(j) Consider W such that w11 = 1− α and wi+1,i = 1− α for i < n.

i. How does a shock from an arbitrary firm’s zi affect the other firms? (Explain the
propagation mechanism)
Solution: Shocks to firm i only affect firm j if j ≥ i, because the the shock propagates
downstream, and this network is a vertical chain.

ii. Can you explain what this network is, economically?
Solution: It’s a vertical supply chain.

(k) Consider W such that w1,n = 1− α and wi+1,i = 1− α for i < n.

i. How does a shock from an arbitrary firm’s zi affect the other firms? (Explain the
propagation mechanism)
Solution: Firms are hit harder when the shocked firm is closer to being directly
“above” them. But “above” is a bit loose of a term here because there is a cycle in
the production network.

ii. Can you explain what this network is, economically?
Solution: It’s a roundabout economy. Every i is used for production in i + 1, with
n used in production of 1.

(l) Consider the following W .

W = (1− α)

1
3

2
3 0

1 0 0
0 0 1


i. How does a shock from an arbitrary firm’s zi affect the other firms? (Explain the

propagation mechanism)
Solution: Firm 1 is affected more by shocks to 1 than 2, because they are able to
substituted towards their own input somewhat. Firm 2 is equaly affected by shocks
to themselves an firm 1, because shocks to 1 directly affect, but shocks to 2 affect
their supplier heavily, which propagates down to them. Firm 3 is isolated from firms
1 and 2.

ii. Can you explain what this network is, economically?
Solution: Firms 1 and 2 depend on each, but firm 3 is isolated.

(m) Recall Hulten’s theorem.

i. Are there any wedges in this model?
Solution: No.
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ii. Do you think the “first-order” caveat of Hulten’s theorem will cause problems?
Solution: This was an intentionally misleading question. In fact, although it may
seem like there is lots of nonlinearity in the above analysis, the entire model is actually
log-linear. Therefore, not only does the “first-order” condition of Hulten not matter,
but the first-order solution is exact, since there are no higher order terms!

(5) Believe it or not, this problem has barely scratched the surface of this area of the literature.
The good news is that lots of the network results are fairly portable. If you want to learn more,
I suggest looking at the work by Baqaee and Farhi.

99



Abram

References

Acemoglu, Daron et al. (2012). “The Network Origins of Aggregate Fluctuations”. In: Econometrica
80.5, pp. 1977–2016.

Allen, Treb and Costas Arkolakis (2014). “Trade and the Topography of the Spatial Economy”. In:
Quarterly Journal of Economics 4, pp. 1085–1139.

Carvalho, Vasco M. and Alireza Tahbaz-Salehi (2019). “Production Networks: A Primer”. In: An-
nual Reviews of Economics 11, pp. 635–663.

Evans, Lawrence C. (2010). Partial Differential Equations, Second Edition. United States of Amer-
ica: American Mathematical Society.

Fajgelbaum, Pablo D and Edouard Schaal (2020). “Optimal Transport Networks in Spatial Equi-
librium”. In: Econometrica 88.4, pp. 1411–1452.

Gabaix, Xavier (2011). “The granular origins of aggregate fluctuations”. In: Econometrica 79.3,
pp. 733–772.

Hubbard, John and Barbara Hubbard (2009). Vector Calculus, Linear Algebra, and Differential
Forms: A Unified Approach, 4th edition. Ithaca, NY: Matrix Editions.

Hulten, Charles R. (1978). “Growth Accounting with Intermediate Inputs”. In: Review of Economic
Studies 45.3, pp. 511–518.

Luenberger, David G. (1969). Optimization by Vector Space Methods. New York, NY: John Wiley
and Sons, Inc.

Royden, Halsey and Patrick Fitzpatrick (2010). Real Analysis, 4th edition. Boston: Prentice Hall.
Rudin, Walter (1976). Principles of Mathematical Analysis. New York: McGraw-Hill.
Spivak, Michael (1965). Calculus on manifolds. New York: W.A. Benjamin.
Strogatz, Steven H. (2018). Nonlinear Dynamics and Chaos with Applications to Physics, Biology,

Chemistry and Engineering. Boca Raton, FL: CRC Press.

100


	These Notes
	References
	Assignments and Grading
	Logic and Proofs
	Truth and Fiction
	Proof
	Direct
	Contraposition
	Contradiction
	Counterexample
	Induction
	Inspection/``It's Obvious"


	Miscellaneous Prelims
	Jections
	Cardinality
	Norms
	Inner Product
	Homogeneity
	Convexity

	Linear Algebra
	Basics
	Transformations
	Eigenstuff
	Jordan
	Symmetry and Definiteness

	Real Analysis
	Setup
	Sequences and Notions of Convergence
	Banach and Hilbert Spaces

	Continuity
	Basics
	Intermediate Value Theorem
	Extreme Value Theorem
	Hemicontinuity

	Differentiation
	General
	L'Hospital
	Chain Rule
	Taylor's Theorem
	Inverse Function Theorem
	Implicit Function Theorem

	Fixed Point Stuffs
	Contraction Mapping Principle
	Brouwer
	Kakutani
	General Note

	Optimization
	Unconstrained
	Equality Constrained
	Inequality Constrained
	Envelope Theorem
	KKT
	Duality

	Conclusion
	Substitution and Income Effects
	CES Magic
	Firm Size and Supply Structure

