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1 Intuition and Motivation

Markov processes1 are “forgetful”, in that they only need the most recent history to know the
distribution of the next draw. We often find these useful in macro, for when we want to model that
something depends only on where it was yesterday, not the day before. Maybe realized TFP has a
random component, but otherwise only depends deterministically on TFP today. Maybe we view
agents decisions in equilibrium as only depending on their state today, not states from earlier.

To be transparent, we are also interested in these because they are analytically nice, as we’ll
see below. We could argue that they provide a good balance between being able to nest somewhat
complicated dynamics, and tractable analytics. If you’re skeptical, I’d encourage you to go find
examples where we need more than just yesterday’s knowledge to learn about the randomness
today. The cases certainly exist, but it’s not so easy to argue that a Markov approximation is
necessarily bad.

2 Basics

Mathematically, a Markov process satisfies

P [Xt ∈ A | Xt−1, Xt−2, . . .] = P [Xt ∈ A | Xt−1]

We’ll focus on finite, discrete Markov processes. Therefore we can model the transition proba-
bilities with a matrix. Consider the following:

0.2 0.8 0
0 0.9 0.1

1.0 0 0


The (i, j) entry tells the probability of moving to state j, given the current state is i.2 So there

is a 0.8 probability of moving to state 2, given that you are currently at state 1. If you are in state
3, you will always move to state 1.

∗Please send corrections to abram@uchicago.edu.
1I here mean first-order. You can make any order process a first-order by a state re-definition anyway, similarly

how all VARs are VAR(1)s if you stack right.
2Some definitions use the transpose of this. As long as you keep straight what’s going on, it’s not an issue.
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Armed with this approach alone, we can start defining other things. Let a Markov matrix be Q.
Perhaps most importantly, the stationary distribution of a Markov process is a vector π satisfying
π′Q = π′. This is a (left) eigenvector of Q with eigenvalue 1, and the interpretation is that if
you have some distribution over the states, then have the whole distribution transition, the new
distribution is the same.

Connected to this idea, Markov processes make it really easy to consider multiperiod transition.
Q2 has entries which the probability of moving from i to j in exactly 2 periods. So if I wanted to
know the probability of moving from i to j in exactly 57 periods, this problem is a priori tricky,
but with a Markov process we just consider the (i, j) entry of Q57.

Powers of Q are also useful for finding the stationary distribution. Note that π′ is a fixed point
of Q. It turns out we can find (the unique) π by considering

lim
n→∞

π′0Q
n

where π0 is any distribution, provided the process is ergodic, meaning the only ergodic set is the
entire sample space.

The simple idea behind the proof for this statement is that we can consider the eigenvalues of
Q. We will find that one eigenvalue is always 1, and the other are ≤ 1. If only one eigenvalue is 1,
then distributions must converge towards the corresponding eigenvector as Q is applied, and this
will happen when the operator is ergodic.

3 Ergodicity

Ergodicity is intuitively the idea that you can start from anywhere, and if you transition enough,
you can get anywhere. For example, the following is obviously ergodic

0.2 0.7 0.1
0.3 0.3 0.4
0.4 0.5 0.1


because it is immediately possible to get anywhere from anywhere. But this is also ergodic

0.2 0.8 0
0 0.9 0.1

0.7 0 0.3


I can get from 1 to 3 in 2 steps, 2 to 1 in 2 steps, and 3 to 2 in 2 steps. Or note that the square

of the above matrix has all positive entries.
An ergodic set is such that all points in the set can be reached from anywhere else in the set,

and no smaller subset satisfies this propery. Formally, a set A is ergodic if both the following hold.

(i) The probability of exiting A is zero, given that you start in A.

(ii) There does not exist a proper subset B ( A such that the above property holds.

Note that we call a process ergodic if it only has one ergodic set, and that set is the whole
space. Consider the following
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0.2 0.8 0
0.8 0.2 0
0 0 1.0


There are 2 ergodic sets: {1, 2} and {3}. Note that the stationary distribution is no longer

unique, since both π = [0, 0, 1] and π = [0.5, 0.5, 0] work3. The takeaway: if you start in an ergodic
set, you never get to leave (with positive probability)!

What then to do with states not in an ergodic set? They are transient. Formally a state is
transient if the probability of exiting and never returning is positive. For any state space, we can
partition the states into a set of ergodic sets, and a set of transient states. Consider the following
matrix

0.5 0.2 0.3
0 0.2 0.8
0 0.7 0.3


The first state is transient, because if the process ever leaves it, then it will never return. Note

this has nothing to do with how likely this event is to happen, since the following example satisfies
the same property, though if one starts in state 1, it will take a long time to ever exit.

1− 10−10 10−10 0
0 0.2 0.8
0 0.7 0.3


4 Cycles

Lastly, we might care about cycles. A set of sets {Ai} is a cycle if there is probability 1 that that
state cycles through A1 → A2 → · · · → An → A1, given that it starts in A1. Note that the sets
may be singletons, and the union of each cycle forms an ergodic set.

5 Problems

5.1 Simple Erogodic

Consider the following Markov transition matrix

A =

0.1 0.5 0.4
0.3 0.7 0
0 0.2 0.8


(i) (Understanding check) What is the probability of going from state 2 to state 1 in one step?

(ii) What is the probability of being in state 1 after exactly two steps, given that you start in
state 2?

3These form the extremal points of a convex hull of distributions that are all stationary.
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(iii) What about exactly 100 steps?

(iv) What about exactly 1000 steps?

(v) Numerically, what do you find as the transition matrix for the first n steps, as n→∞? What
can you say about how the initial distribution matters?

5.2 Random Walk

Consider the following biased random walk with reflection on the boundaries.

B =



b 1− b 0 · · · 0
b 0 1− b 0 · · · 0
0 b 0 1− b 0 · · · 0
...

. . .
...

0 · · · b 0 1− b 0
0 · · · b 0 1− b
0 · · · b 1− b


(i) What is the stationary distribution when b = 1

2?

(ii) What if b = 0.6?

(iii) Try b = 0.51

(iv) One common criticism in macro is that we focus too much on details that make only a tiny
difference for each agent, so how could these details possibly make a big difference in the
macroeconomy? If we take the above Markov process to be some reduced-form model of
general equilibrium for something of interest, what can we conclude about the effects of small
amounts of bias (b = 0.5± ε) on the equilibrium distribution?

(v) Evaluate the following statement: “If a change in assumptions has a small impact on household
choices, then it will also have a small impact on the implied general equilibrium.”

(vi) Evaluate the following statement: “If a change in assumptions has a large impact on household
choices, then it will also have a large impact on the implied general equilibrium.”

6 Continuous time

Increasingly, we want to model in continuous time. The above formulation works well for discrete
time models, since there is a clear arrival time (once per period), and it is clear how we transition.
In continuous time, we instead allow for Poisson rate of arrival, call it λ, and consider the flow
between states, conditional on arrival, call this matrix P . In discrete time, the transition matrix
operated on a given distribution, so we had4

πt+1 = Q′πt

4Switching to left eigenvector notation because I am more comfortable.
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and the stationary distribution then satisfies π̄ = Q′π̄. In continuous time, the operator tells how
mass should flow from each point to each other point, so we have a differential equation.

π̇(t) = P ′π(t)

and the stationary distribution the satisfies 0 = P ′π̄. The solution is then π(t) = exp(tP ′)π(0),
and if the process is ergodic, π will converge to its stationary distribution and π(0) will cease to
matter as t→∞.

We may convert between continuous and discrete time using the following, where Q is the
discrete time transition matrix, I is the identity, λ is the rate of shock arrival, and P is the
continuous time infinitesimal generator (the “transition matrix” for continuous time).

P = λ(Q− I)
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