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1 Purpose

To model choices over a set of options, it is often useful to say that agents receive idiosyncratic
preference shocks over the choices. This assumption delivers realistic “smoothness” in outcomes, in
that choices with better fundamentals are not chosen by every agent, since preference shocks cause
many (often most) agents to select an option with submaximal fundamentals (but of course larger
personal preference). The two dominant ways of modelling this assumption are via assuming an
additive preference shock or a multiplicative preference shock. For an additive shock, the convenient
shock distribution is Gumbel, and for the multiplicative shock, the convenient shock distribution
is Frechet.

All the results below are canonical, but I often find myself getting confused (e.g. should this be a
exp(ϵA) or Aϵ form?), so I decided to collect all the algebra and results in one place for a handy
reference. I first show some properties of using Gumbel shocks, then show the relationship between
Frechet and Gumbel shocks so I can also show properties of using Frechet shocks. I briefly explain
how the finite choice case extends to infinitely many choices, then provide some examples and
nonexamples.

Tildes denote logs, i.e. Ã ≡ lnA. It may then seem strange to start below by defining tilde
variables, but it will become apparent that this is the correct notion, since logs of Frechet random
variables are Gumbel.

∗Send corrections or comments to abram@uchicago.edu.
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2 Summary

For quick reference, I list the main results from below.

• If η̃ ∼ Gumbel(µ, β), then E[η] = µ+ βγ, where γ is the Euler-Mascheroni constant

• If η̃ ∼ Gumbel(0, 1ϵ ), Ã is real, then Ã+ η̃ ∼ Gumbel(Ã, 1ϵ )

• If η̃i ∼ Gumbel(0, 1ϵ ) iid, Ãi are real, then maxi{Ãi + η̃i} ∼ Gumbel
(
ln
(∑n

i=1 exp(ϵÃi)
)
, 1ϵ

)
• If η̃i ∼ Gumbel(0, 1ϵ ) iid, Ãi are real, then Pr[j = argmaxi{Ãi + η̃i} =

exp(ϵÃj)∑
i exp(ϵÃi)

• If η ∼ Frechet(ϵ), A is positive, then ln(Aη) ∼ Gumbel(lnA, 1ϵ )

• If ηi ∼ Frechet(ϵ) iid, Ai are positive, then maxi{ln(Aiηi)} ∼ Gumbel(ln
∑

iA
ϵ
i ,

1
ϵ )

• If ηi ∼ Frechet(ϵ) iid, Ai are positive, then Pr[j = argmaxiAiηi] =
Aϵ

j∑
i A

ϵ
i
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3 Gumbel

I start with Gumbel shocks (the additive form). The ultimate result is to find the choice probabil-
ities, but to get there I first show some intermediate results. The final result requires a beast of
an integral, but luckily some eagle-eyed substitution makes the problem quite easy, and the final
answer intuitive.

3.1 Definition

The Gumbel(µ, β) distribution with location µ and scale β has the following CDF F and PDF f .

F (x) = exp

(
− exp

(
−
(
x− µ

β

)))
f(x) ≡ F ′(x) =

1

β
exp

(
− exp

(
−
(
x− µ

β

)))
exp

(
−
(
x− µ

β

))
The mean of such a distribution may be calculated by employing a variety of simple, but perhaps
unintuitive to guess, calculus steps. First, use the substitution z = x−µ

β , then use the substitution

y = e−z. These two substitutions simplify the integral significantly, and allow for evaluating in two
pieces. The second piece is a trivial improper integral. The first piece’s integrand may be recognized
as the derivative of a particular function evaluated at zero, then the differentiation operator may
be pulled outside of the integral. The remaining integral is simply a Gamma function, and using
the definition of the Euler-Mascheroni constant γ ≡ Γ′(1) yields the final solution. I complete these
steps below.

E[X] =

∫ ∞

−∞
xf(x)dx

=

∫ ∞

−∞
x
1

β
exp

(
− exp

(
−
(
x− µ

β

)))
exp

(
−
(
x− µ

β

))
dx (Plug in)

=

∫ ∞

−∞
(βz + µ) exp (− exp (− (z))) exp (− (z)) dz (z = x−µ

β )

=

∫ ∞

0
(β ln y + µ) exp (−y) dy (y = e−z)

=

∫ ∞

0
β ln y exp (−y) dy +

∫ ∞

0
µ exp (−y) dy (Split up pieces)

= β

∫ ∞

0

[
d

dk
yk exp (−y)

∣∣∣
k=0

]
dy + µ

[
−e−y

∣∣∣∞
0

]
(Calc rules)

= β
d

dk
Γ(k + 1)

∣∣∣
k=0

+ µ (Def. of Γ)

= βγ + µ

3.2 Additive shift

Let X ≡ η̃ ∼ Gumbel(0, 1ϵ ), so it has the following distribution.

FX(x) = exp (− exp (−ϵx))
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Let Ã be a real number. Then Y ≡ Ã+ η̃ is Gumbel(Ã, 1ϵ ):

FY (x) = Pr[Ã+ η̃ ≤ x]

= Pr[η̃ ≤ x− Ã]

= exp
(
− exp

(
−ϵ(x− Ã)

))
3.3 Maximum of n additively shifted independent draws

Now consider Yi ≡ Ãi + η̃i ∼ Gumbel(Ãi,
1
ϵ ) for n real numbers Ãi and n independent η̃i ∼

Gumbel(0, 1ϵ ). The CDF of maxi{Ãi + η̃i} is:

Fmaxi Yi(x) = Pr[max
i

{Ãi + η̃i} ≤ x]

=

n∏
i=1

Pr[Ãi + η̃i ≤ x] (Independent)

=
n∏

i=1

exp
(
− exp

(
−ϵ(x− Ãi)

))
= exp

(
−

n∑
i=1

exp
(
−ϵ(x− Ãi)

))
This is decent-looking, but it’s unclear if this is a Gumbel distribution or not. The trick is to
recognize that we can log the sum and move it into the inner exponential, and see maxi{Ãi+ ηi} ∼
Gumbel

(
ln
(∑n

i=1 exp(ϵÃi)
)
, 1ϵ

)
:

exp

(
−

n∑
i=1

exp
(
−ϵ(x− Ãi)

))
= exp

(
− exp(−ϵx)

n∑
i=1

exp
(
ϵÃi

))

= exp

(
− exp

(
−ϵ(x− ln

(
n∑

i=1

exp(ϵÃi)

)))

3.4 Selection probabilities for max of n independent shifted draws

Now suppose we are interested in knowing the probability that Ãj + η̃j is the maximum of the n
choices, in other words j = argmaxi{Ãi + η̃i}. Call this probability πj .

πj = Pr[Ãj + η̃j = max
i

{Ãi + η̃i}]

= Pr[max
i ̸=j

{Ãi + η̃i} ≤ Ãj + η̃j ]

=

∫
R
Pr[max

i ̸=j
{Ãi + η̃i} ≤ z]Pr[Ãj + η̃j = z]dz

The last line above is perhaps a bit fast and loose with the measure theory, but nonetheless it makes
clear what we mean: we consider the probability that all other draws are less than some value which
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j takes, then sum over the probability that j takes each possible value. The above results are now
useful to replace the Pr terms in the integrand, where the second term is the density of Ãj + η̃j

πj =

∫
R
exp

− exp

−ϵ(z − ln

∑
i ̸=j

exp(ϵÃi)

 ϵ exp
(
−(ϵ(z − Ãj) + exp

(
−ϵ(z − Ãj)

))
dz

What a mess! Let’s move some things around to try to clean it up.

πj =

∫
R
exp

(
− exp

(
−ϵ

(
z − ln

∑
i

exp(ϵÃi)

)))
ϵ exp

(
−ϵ(z − Ãj)

)
dz

Closer, but the integral still seems so ugly. This last step is the least intuitive, but what we can do
is recognize that the integrand looks similar to the density of a Gumbel. In particular, the integral
is in the following form, where y ≡ z − Ãj .

∫
R
e
−e−ϵy ·

∑
i exp(ϵÃi)

exp(ϵÃj) ϵe−ϵydy

Letting u = e
−e−ϵy ·

∑
i exp(ϵÃi)

exp(ϵÃj) , we have du =
∑

i exp(ϵÃi)

exp(ϵÃj)
e
−e−ϵy ·

∑
i exp(ϵÃi)

exp(ϵÃj) ϵe−ϵydy, and thus the integral

is simply

πj =

∫ 1

0

exp(ϵÃj)∑
i exp(ϵÃi)

du

=
exp(ϵÃj)∑
i exp(ϵÃi)
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4 Frechet

Rather than rederive all the corresponding above results for the Frechet shock case, I just show
how to transform the Frechet form into the Gumbel form, then get the results directly.

4.1 Definition

The Frechet(ϵ) distribution with shape ϵ has the following CDF.

F (x) = exp
(
−x−ϵ

)
Let X ∼ Frechet(ϵ), and define Y ≡ lnX. Then Y ∼ Gumbel(0, 1ϵ ):

FY (y) = Pr[Y ≤ y]

= Pr[lnX ≤ y]

= Pr[X ≤ exp(y)]

= F (exp(y))

= exp
(
− (exp(y))−ϵ)

= exp (− exp (−ϵy))

Therefore we can log the Frechet variables of interest to get them in Gumbel form, then apply the
above Gumbel results, without having to redo all the math.

4.2 Multiplicative shift

Let η ∼ Frechet(ϵ). Then ln(Aη) = Ã+ η̃, thus ln(Aη) ∼ Gumbel(Ã, 1ϵ ).

4.3 Maximum of n multiplicatively shifted independent draws

LetAi be n positive real numbers and ηi be n independent Frechet(ϵ) draws. Then maxi{ln(Aiηi)} =
maxi{Ãi + η̃i} ∼ Gumbel(ln

∑n
i=1 exp(ϵÃi),

1
ϵ ) = Gumbel(ln

∑n
i=1A

ϵ
i ,

1
ϵ ).

4.4 Selection probabilities for max of n indepdenent multiplicatively shifted
draws

Monotonic transformations preserve ordering, so Pr[Ajηj = maxi{Aiηi}] = Pr[Ãj+η̃j = maxi{Ãi+
η̃i}. Therefore, if we let πj now denote the probability Ajηj is the max, we have

πj =
exp(ϵÃj)∑n
i=1 exp(ϵÃi)

=
Aϵ

j∑n
i=1A

ϵ
i
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5 Infinitely Many Choices

The above exposition assumed finitely many locations, and thus sidestepped any concerns about
sums converging. Nonetheless, the results above go through as long as the relevant sums or integrals
converge. For countably many choices indexed by ℵ, the choice probabilities are simply

πj =
exp(ϵÃj)∑
i∈ℵ exp(ϵÃj)

The same idea holds for a continuum of choices C, we just replace the sums with integrals.

π(j) =
exp(ϵÃ(j))∫

C exp(ϵÃ(i))di

The slight complication is that the π(j) are now with respect to whatever measure C is endowed
with, whereas above we were implicitly always using the counting measure. For more on the exact
technical details of the construction of the shock process to make this representation make sense,
see Cosslett (1988).
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6 Clarifying Examples

6.1 Finite choices spatial example with Gumbel

Consider a unit measure of households that all live at the same location, and are each choosing where
to work, among n locations. Location i takes τ̃i minutes to commute to, but each household draws
an independent preference draw for each location, with dispersion parameter 1

ϵ , so their potential
utilities are −τ̃i + η̃i, and each household picks the location which delivers maximal utility. Then
the share of households choosing j is

πj =
exp(−ϵτ̃j)∑n
i=1 exp(−ϵτ̃i)

Locations which take longer to commute to are chosen by a lower share of households. Additionally,
as ϵ increases, shocks are less dispersed, so a higher share of households go to the lowest τ̃ location.

6.2 Finite choice spatial example with Frechet

Now suppose households get utility from each location, but that if the location is τ away, they
only get 1

τ η utility, where η is iid Frechet(ϵ) across all locations and households. Then the share of
households choosing j is

πj =
exp(−ϵτ̃j)∑n
i=1 exp(−ϵτ̃i)

=
τ−ϵ
j∑n

i=1 τ
−ϵ
i

6.3 Countable choices example

Let i ∈ {0, 1, . . .}, and Ai = βi, where β ∈ (0, 1). Utility is Aiηi, where ηi is iid Frechet(ϵ). Then

πj =
Aϵ

j∑
iA

ϵ
i

=
βϵj

1
(1−β)ϵ

=
(
(1− β)βj

)ϵ
The Ai are decaying fast enough that the sum in the denominator converges, so the πj are proper
probabilities.

6.4 Countable choices nonexample

Suppose instead Ai = 1, again for i ∈ {0, 1, . . .}. Then the denominator will not converge, and thus
the π terms are nonsense. The economic reason is that there is no maximal choice, because for
any potential optimal choice j, with probability 1 there is a better option j′ > j. Mathematically,
the reason is that the expected value of the max is increasing in n when all the Ai are the same,
thus having countably many possibilities will mean the expectation of the max is infinite. This
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was not an issue in the previous example because, although there were infinitely many choices, the
exponential decay of A as j increased meant that high j options offered vanishingly little chance of
being maximal, and thus the expectation remained finite.

6.5 Continuum of choices example

Suppose A(i) = iβ for i ∈ [0, 1], β > 0. Then the choice probabilities are

π(j) =
jϵβ∫ 1

0 iϵβdi

where the Lebesgue measure is implicitly being used.

6.6 Continuum of choices nonexample

Suppose A(i) = 1
i for i ∈ (0, 1] and A(0) = 1. Then for j > 0, the implied choice probabilities

would be

π(j) =
j−ϵ∫ 1

0 i−ϵdi

but the integral in the denominator does not converge. The issue is similar to the above counterex-
ample: for any j which might be optimal, with probability 1 there exists a j′ < j which delivers
a higher A(j)η(j). Mathematically, the expectation of the maximum over the continuum simply
does not exist.
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